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ABSTRACT

The basic representational hypothesis in phonology
is that segments are coded using a universal set of
discrete features. We propose a method for quantita-
tively measuring how well such features align with
arbitrary segment representations. We assess artic-
ulatory, spectral, and phonotactic representations of
English consonants. Our procedure constructs a con-
crete representation of a feature in terms of the pairs
it distinguishes, and can be extended to any pair of
representations to test the consistency of one with
the individual dimensions of the other. We validate
the method on our phonetic representations and then
show that major natural classes are not well repre-
sented in the surface phonotactics.

Keywords: features; perception-production; quan-
titative methods; phonotactics

1. INTRODUCTION

Where do phonological features come from? Most
feature sets attempt to make the classes that are “nat-
ural” to a learner featurally simpler; but it is also as-
sumed that features are phonetically grounded. To
assess how well natural classes are grounded in the
phonetics, previous work has taken representations
of segments based on articulation, acoustics, and
tendency to group together crosslinguistically, and
compared them qualitatively using visual inspection
of a principal component analysis [7].
We propose a method for assessing this kind of

alignment quantitatively. We limit ourselves to
alignment with hand-defined natural classes, and
demonstrate its use in finding what is coded in rich
acoustic and articulatory representations. We then
apply the method to the question of whether phono-
logical features are emergent, i.e., substance-free
and grounded only in language-specific phonologi-
cal patterning [9, 6]. This would imply that phono-
logical patterning should determine, and therefore
align with, the phonological features. We find no
evidence in favor of this hypothesis as it applies to

English surface phonotactics aligning with standard
place, manner, and voicing features on consonants.

2. DATA

To develop and test our method, we compared acous-
tic, articulatory, and phonotactically based represen-
tations of the consonant inventory of English. The
acoustic representation of a phone was the corpus-
wise average of 40 mel scaled filter banks, in a stack
of 11 frames centered on the midpoint of each to-
ken of the category (25 ms windows spaced at 10
ms intervals), taken from TIMIT [3]. The articula-
tory representation of a segment was taken from the
data reported on in [7]: vertical oral cavity distances
estimated from ultrasound, plus vocal fold activity
from EGG and oral and nasal airflow measurements,
averaged over the productions of three trained pho-
neticians in V–V context for each of the three corner
vowels. See [7] for details.
We used two different methods to extract a phono-

tactic representation for a segment without using fea-
tures, both applied to the phonetic transcripts from
the naturalistic Buckeye interview corpus [10]. The
first uses a neural network (NN) approach where
the surrounding phone sequence (plus and minus
two segments) have to be predicted from a central
phoneme [8]. The NN is a log–linear model com-
posed of an input layer (of 39 phonemes) mapping to
an embedding (of dimension 10) and then to the out-
put layer (logistic regressions to 4×39 phonemes),
and is trained with backpropagation with the logis-
tic loss. The weights are used as a representation for
the input phone. The second uses a singular value
decomposition approach (SVD). We recorded rel-
ative frequencies of individual left-context phones
and bigrams, right-context phones and bigrams, and
of individual left-and-right contexts with a window
of both one and two segments. We took the result-
ing table of relative frequencies and applied matrix
factorization to reduce the dimension to 30. Both
models ignored word boundaries. (An SVD model
that included word boundaries was not meaningfully
different from these ones; we thus leave it out of fur-



Feature Minimal phone pairs
Nasal m–b, n–d, ŋ–g
Continuant v–b, f–p, z–d, s–t
Coronal-Dorsal d–ɡ, t–k, n–ŋ
Coronal-Labial d–b, t–p, s–f, z–v, n–m
Labial-Dorsal b–ɡ, p–k, m–ŋ
Voice b–p, d–t, ɡ–k, v–f, z–s, ʒ–ʃ

Table 1: Minimal pair sets for each of the six fea-
tures.

ther discussion.) Related approaches to pattern ex-
traction from context are used in document process-
ing [5]. Unlike the most widely used linguistic algo-
rithm for learning phonotactics [4], neither presup-
poses any featural analysis.
Principal component analysis (PCA) was applied

to rotate, center, and rescale all the feature represen-
tations, and reduce the dimension to no more than
the number of phoneme, by taking the top principal
components. This is important, in order to correct
for arbitrary differences in the scale of different di-
mensions (most obviously, between airflow and ul-
trasound measurements).

3. METHOD

Starting with a set of segments, we set up contrasts
based on a fixed binary feature representation. We
then evaluate various representations of the same set
of segments to see how well these contrasts are cap-
tured. We focused on six featural contrasts for con-
sonants: twomanner features ([nasal], [continuant]),
three place contrasts, ([coronal]–[dorsal], [coronal]–
[labial], and [labial]–[dorsal]), and [voice]. Al-
though for current purposes we set up these contrasts
by hand, each one is meant to correspond to a feature
contrast in a binary feature system.

3.1. Constructing representations of features

A feature is matched to a set of minimal pairs of
phones that contrast in that feature. The sets cor-
responding to each of the features we selected are
shown in Table 1.
These pairs are minimal in the sense that the two

segments differ primarily on the given feature. We
chose these sets as largely uncontroversial contrasts.
In fact, the notion of “primarily” or “con-

trastively” is underdetermined. Natural inventories
are not symmetrical enough for there to be many sets
which differ only in a single feature. For example,
although [s] and [t] uncontroversially stand in the
same relation as [f] and [p] in many languages, [f] is
labiodental, while [p] is bilabial. This is often coded
using the feature [distributed], a feature on which [s]

and [t] do not differ.

Such additional differences between pairs can be
deemed not to count towards minimal pairs. Ul-
timately, however, selection criteria are needed to
determine which features count for which sets of
segments. The contrastive hierarchy hypothesis [2]
argues that the contrastive features for a segment
should be determined on a language specific basis on
the basis of the phonological patterning of that lan-
guage. Alternatively, one could determine the rel-
ative importance of features to particular segments
depending only on the other members of the inven-
tory, an approach which has the advantage of requir-
ing only an inventory table, and thus being easy to
determine using objective statistical or information-
theoretic criteria. The general problem is that of de-
termining and justifying contrastive featural classes.
Any attempt to pick out individual dimensions in
one encoding for comparison with another must deal
with this problem in one way or another, but we
bracket the problem in order to demonstrate the core
of our method.

Once aminimal phone pair set is constructed, each
member is translated into a representation of the
given feature contrast. Even though we constructed
our minimal phone pairs by hand, we operate on the
premise that they capture minimal specification dif-
ferences in some particular feature representation.
The full featural representations for the two phones
are coded as vectors in this classifying representa-
tion space. Their vector subtraction becomes a con-
crete representation of that feature. We call each
such subtraction vector a frep, for representation of
a feature. We generated our vectors using a modi-
fied version of the system of [1] with most feature
specifications irrelevant to the contrast being tested
removed. (The exact feature system does not matter
if the classes are chosen by hand, as we have done
here, as our method simply uses the vectors to di-
vide freps into those that represent the same versus
different features; see below.)

After the freps are generated in the classifying rep-
resentation space, equivalent freps are generated in
the encoding being evaluated, the test representation
space. The method is based on the idea that similar
classifying representation freps should correspond to
similar test representation freps. Alongside the freps
for a feature, we take the phones in Table 1 and re-
combine them into all other possible minimal phone
pairs (which can be seen as freps corresponding to
other features). See Figure 1.
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Figure 1: Left (classification space): two freps
for [voice] (blue) and one frep for a different fea-
ture, in this case coding the coronal–labial distinc-
tion, (orange). Right (test space): the correspond-
ing freps in a hypothetical encoding.
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Figure 2: Our method compares the cosine of the
angles between freps for the same feature and freps
between different features, in the test representa-
tion space.

3.2. Comparing representations of features

For a given feature f , we compare freps for f with
freps for f , and freps with non-freps for f , i.e., the
other minimal phone pairs constructed out of the set
of phones in Table 1, i.e., a set of relevant freps for
other features. Freps for f are, by construction, more
similar to each other in the classifying representation
than they are to freps for any other feature g. Our test
assesses whether this is also true in the test represen-
tation.
We use the absolute value of the cosine of the an-

gle between two vectors as a frep similarity function
in the test space:

sim(x⃗, y⃗) =

∣∣∣∣ x⃗ · y⃗
∥x∥∥y∥

∣∣∣∣(1)

Orthogonal freps will have similarity 0, while
collinear freps will have similarity 1. In general, if
f is well represented in the test representation, then
we expect within-feature frep pairs (f frep versus
f frep) to be more similar than between-vector frep
pairs (f frep versus g frep). See Figure 2.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Test Representation Acoustic
Articulatory

Phonotactic (NN)
Phonotactic (SVD)

Figure 3: ROC curves for the four test represen-
tations for the feature [voice].

3.3. Alignment scores

All frep pair similarities in the test space are com-
puted (both the f–f and the f–g pairs associated
with a feature’s minimal phone pair set). We assess
how easily the similarity values are classified into
within- versus between-feature pairs. We compute a
receiver operating characteristic curve (ROC curve),
and compute the alignment of the test representation
with the given feature as the area under the curve
(AUC). The ROC curve is given by the set of unique
⟨false positive rate, true positive rate⟩ pairs obtained
from assessing every possible within/between clas-
sifier that is linear on similarity. An example for
[voice] is shown in Figure 3.
The exact area under the curve is computed from

these points. The maximum score is 1, and the mini-
mum is 0; 0.5 indicates that the classifier is at chance.
Values below 0.5 will occur if the test representation
is better at capturing dimensions that are negatively
correlated with the feature of interest. To the extent
that the number of f–f reps is small compared to
the number of f–g freps, f–f freps may also be dis-
tributed unevenly in the test space, which can give
the appearance of negative (or positive) correlation
with the feature by chance.

4. RESULTS

Alignment scores are shown in Figure 4. The acous-
tic representation performs very well for manner and
voicing, but is poor for place features. The articula-
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Figure 4: Alignment scores for all four test
representations (0.5 is chance and 1.0 is the
maximum); versus manner features ([continuant]
and [nasal]), place contrasts ([coronal]–[dorsal],
[coronal]–[labial], and [labial]–[dorsal]), and the
feature [voice].

tory representation performs very well for place fea-
tures and voicing, and poorly for manner features.
The poor performance on manner may be due to the
fact that this representation consists of duration nor-
malized ultrasound and airflow data, which are not
likely to capture these fine distinctions. Finally, nei-
ther representation of English phonotactics performs
substantially above chance.
Some tests show actually below chance perfor-

mance: for example, [coronal]–[dorsal] for the spec-
tral representation, and [nasal] for one of the repre-
sentations of phonotactics. Figure 5 compares the
distribution of within and between feature similari-
ties for these representations versus the acoustic rep-
resentation, which performs well.
Although the number of pairs is small, the within-

feature scores well are below the median, suggesting
that the dominant dimensions in the test representa-
tions do indeed tend toward negative correlationwith
the features being tested.

5. CONCLUSION

We presented a new method for evaluating the
grounding of phonological representation in acous-
tic, articulatory and phonotactic space. The results
on acoustic and articulatory are consistant with ex-
pectations about the grounding of place and manner
features. The fact that the phonotactics of English
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Figure 5: Within and between class frep pairs for
good (upper and lower left) versus badly perform-
ing test representations (upper and lower right).

align so poorly with basic natural classes prima fa-
cie challenges emergent feature theories. We have
certainly not exhausted the space of cognitively rea-
sonable phonological pattern based representations;
nevertheless, given that at least some of the features
we tested are phonologically active in English (for
example, place, in nasal place assimilation, and voic-
ing, in coda obstruent voicing restrictions), it is wor-
rying that we do not see them robustly attested.
It is unsurprising that at least the core of the stan-

dard phonological feature system for consonants is
consistent with major dimensions of phonetic vari-
ability, since standard phonological features are at
least partly phonetically interpretable by design. The
general procedure we have presented does not allow
us to evaluate the hypothesis that any of these fea-
tures is cognitively active; rather, it allows us to as-
sess which sources of information are available in
acquisition and processing, if any, that would sup-
port their being cognitively active. That we have a
quantitative measure of this is an advance over pre-
vious research.
Future work should explore general procedures

for workingwith a classifying representation to auto-
matically determine the dimensions of greatest con-
trast, keeping in mind that this may be different de-
pending on a segment’s location in the classifying
space. With such a tool available, it would become
straightforward to compare arbitrary pairs of repre-
sentations. An extension to continuous classifying
representations can be made, for example, to sum-



marize how clearly important articulatory parame-
ters are easily recoverable from the spectrum with-
out needing to narrowly define what the spectral sig-
nature should look like. This could be done by dis-
cretizing and using the procedure described here, or
by evaluating correlations rather than two-way clas-
sification performance.
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