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ABSTRACT

Despite their large advances, especially for con-
sumer applications, automatic speech technologies
still encounter very huge difficulties when they are
exposed to dysarthric speech. However, they were
presented very early as potential solutions to pro-
vide objective tools to deal with speech disorders
in order to help clinicians in their clinical prac-
tice and patients in their everyday life. In order
to understand the difficulties encountered by auto-
matic speech processing, this paper investigates the
reliability of a simple automatic phone alignment
when dealing with dysarthric speech. Notably, the
corpus used involves French read speech record-
ings produced by patients suffering from four dif-
ferent pathologies, exhibiting three different types
of dysarthria. The observations of the segmenta-
tion outputs yielded by the automatic tool (com-
pared with a manual segmentation) according to the
pathologies, the type of dysarthria and different pho-
netic categories reveal a very large heterogeneity of
behavior between pathologies, and within a same
pathology.
Keywords: Dysarthria, automatic text-constrained
phone alignment, pathology-dependent phonetic
analysis

1. INTRODUCTION

Dysarthria is a motor speech disorder, consequence
of neurological damages located either in the central
or in the peripheral nervous system. This may result
in disturbances in any of the components involved
in the speech production, like respiratory, phonatory,
resonatory, articulatory and prosodic. Consequently,
this may be reflected by weakness, spasticity, in-
coordination, involuntary movements, or abnormal
muscle tone, depending on the location of the neu-
rological damage. Research on dysarthria is very
abundant and has covered different axes for about
fifty years : perceptual evaluation of speech alter-
ations for dysarthria classification [5, 6, 7], percep-
tual measurement of dysarthria severity, notably re-
lated to the speaker’s intelligibility ([8, 26, 13, 16]),
articulatory or/and acoustic analysis ([14, 17, 21,

4, 11, 25]), automatic speech processing for intel-
ligibility assessment ([2, 18, 19, 15]) or for speech
recognition ([22, 12, 20, 23, 3]). The aim of these
studies has been to better understand and charac-
terize diseases and related speech disorders, to help
clinicians for diagnosing and following the condi-
tion progression of patients, but also to design ther-
apy objectives, or to help patients with severe speech
disorders in their everyday life through Alternative
and Augmented Communication (AAC) tools.

Regarding the automatic approaches, they were
presented very early as potential solutions to provide
objective tools to deal with speech disorders [9].
However, if speech technologies have reached an
advanced stage for consumer applications, major is-
sues remain for dysarthric speech application. Even
though there is a set of typical acoustic-perceptual
cues, such as imprecise consonants, vowel central-
ization, slow rate, monopitch, monoloudness, hyper-
nasality, that is commonly used to characterize the
main disturbances of the various types of dysarthria
in the speech production, more descriptive acoustic
and phonetic analysis is still necessary in order to
take into account the large variability in terms of
speech alterations observed among patients in dif-
ferent disease groups and also within the same group
[24]. The objective of the work1 presented in this pa-
per is to observe and analyze the behavior of a very
straightforward speech processing task when it is ap-
plied on a dysarthric speech corpus. The particular-
ity of this study is to involve a speech corpus pro-
duced by French patients suffering from four differ-
ent diseases and types of dysarthria. The speech pro-
cessing task relies on an automatic text-constrained
phone alignment, which "simplicity"2 will face po-
tential difficulties in dealing with dysarthric speech.

2. AUTOMATIC SEGMENTATION SYSTEM

An automatic text-constrained phone alignment tool
aims at providing a segmentation of speech utter-
ances into phones. This tool takes as input the
sequence of words pronounced in each utterance
and a phonetized lexicon of words. The latter is
based on a set of 37 French phones and includes
different phonological variants per word. The se-



quence of words comes from an orthographic tran-
scription performed by a human listener. This man-
ual transcription follows some specific rules to de-
note deletions, substitutions, insertions and repeti-
tions of some words and/or phone sequences pro-
duced by speakers. Moreover, for this manual tran-
scription, speech records are split into inter-pausal
units (IPUs). An IPU is defined as a pause-free unit
of speech from the same speaker separated from an-
other IPU by at least 250ms of silence.

The automatic alignment process is based on a
Viterbi decoding and graph-search algorithms, the
core of which is the acoustic modeling of each phone
based on a Hidden Markov Model (HMM). The
HMM-based models used in this work are built us-
ing the Maximum Likelihood Estimate paradigm on
the basis of about 200 hours of French radiophonic
speech recordings [10]. In order to get speaker-
dependent models, a three-iteration Maximum A
Posteriori (MAP) adaptation is performed to all the
HMM parameters. Finally, acoustic vectors consist
of 12 Perceptual Linear Prediction coefficients plus
the energy, plus their delta and delta-delta coeffi-
cients. This automatic alignment process results in
a couple of start and end boundaries per phone pro-
duced in the speech records.

3. EXPERIMENTAL PROCEDURE

3.1. Corpus

The current study is based on a speech corpus pro-
duced by 25 speakers: 13 healthy speakers (control)
and 12 dysarthric patients. The patients suffer from
various diseases: Amyotrophic Lateral Sclerosis
(ALS), Parkinson’s Disease (PD), Cerebellar Ataxia
(CA) and Lysosomal Storage Disease (LSD) and
present various dysarthria severity degrees (DSD).

All the participants were asked to read the same
text, a French fairy-tale called "Le cordonnier" (The
cobbler), as naturally as possible. In this paper, we
however use only the first paragraph of this text con-
taining 215 phones (95 vowels and 120 consonants).
The duration of speech utterances varies from 21s
to 61s with an average of about 26s for the control
speakers and 32s for the patients. The differences in
duration observed for the patients are due to differ-
ences in speech rate.

All the speech recordings were evaluated percep-
tually by a jury of 11 experts. They were asked to
rate all the patients on perceptual items of speech
quality. These items included the global evaluation
of the Dysarthria Severity Degree (DSD) rated on
a scale from 0 to 3 (0 -no dysarthria, 1 -mild, 2 -
moderate, 3 -severe dysarthria) and the evaluation
of speech rate on a scale from -3 to 3 (-3 -very slow,
0 -normal, 3 -extremely fast speech rate) on which
this paper is focused.

In addition, all the speech utterances were ana-
lyzed by human experts based on their listening and
the Praat [1] tool in order to provide a manual seg-
mentation of phones. This manual segmentation was
carried out by making corrections of phone bound-
aries, if necessary, on the basis of an automatic
phone segmentation. It has to be noted that the hu-
man expert could encounter difficulties in defining
phone boundaries, especially when the speech qual-
ity was dramatically altered. Such non-segmentable
phone sequences were not considered in the rest of
the paper. Table 1 provides detailed information on
this speech corpus, including per disease the number
of patients, the minimum and maximum DSD and
the minimum and maximum speech rate. We can
point out that the speech corpus used in this paper is
produced by patients with mild dysarthria.

3.2. Evaluation

In order to analyze the behavior of the text-
constrained phone alignment tool, the automatic
phone segmentation outputs are compared to the
manual outputs provided by the human expert. In
this context, three measures, expressed in ms, are
computed for each phone :
- the Start Shift (SS), which is given by the absolute
value of the difference between the phone start
boundaries from the automatic and manual segmen-
tations;
- the Midpoint Shift MS, which is given by the
absolute value of the difference between the phone
midpoints from the automatic and the manual
segmentations;
- the Duration Difference DD, which is given by
the difference between the phone durations from
the automatic and manual segmentations (negative
values correspond to shorter durations of phones
from the automatic segmentation).

4. RESULTS AND DISCUSSION

Table 1: Information related to the corpus: the
number of speakers, the minimum and maximum
Dysarthria Severity Degrees (DSD) and the mini-
mum and maximum speech rate per disease.

Disease Number of (Min,Max) (Min,Max)
speakers DSD speech rate

ALS 2 (0.9,1.5) (-0.5,-0.2)
PD 4 (0.4,1.3) (-0.1,1.7)
CA 4 (0.9,1.5) (-2.2,-0.8)
LSD 2 (1.5,1.5) (1.5,2.8)
Control 13 - -

This section details and discusses the behavior of
the automatic phone segmentation tool on both nor-



Table 2: Performance of the automatic phone segmentation system expressed in terms of average and standard
deviation (σ ) of Start Shift SS, Midpoint Shift MS and Duration Difference DD given per pathology and phonetic
category. All the measures are expressed in terms of ms.

Phonetic Measure Control Pathology
category speakers LSD ALS CA PD
Unvoiced SS (σ ) 11.2 (21.2) 17.6 (32.7) 13.0 (13.1) 16.1 (27.5) 11.3 (24.9)
Plosives MS (σ ) 10.7 (13.0) 11.9 (17.6) 9.2 (8.9) 14.2 (16.7) 9.8 (14.2)

DD (σ ) -3.5 (29.2) -7.7 (21.4) -5.6 (22.2) -5.4 (32.0) -1.8 (15.5)
Voiced SS (σ ) 8.5 (14.2) 13.9 (14.2) 24.6 (59.3) 21.9 (28.6) 13.1 (23.4)
Plosives MS (σ ) 6.9 (9.5) 12.8 (19.2) 21.3 (33.2) 18.0 (21.7) 10.5 (13.0)

DD (σ ) 4.7 (22.4) 15.4 (38.9) 11.5 (70.2) 9.2 (42.6) 11.9 (31.7)
Unvoiced SS (σ ) 18.8 (10.5) 11.8 (10.4) 20.0 (13.0) 16.4 (28.2) 10.8 (11.0)
Fricatives MS (σ ) 24.9 (16.0) 18.5 (12.9) 23.8 (15.2) 25.4 (18.6) 19.6 (12.2)

DD (σ ) -12.3 (30.6) -16.9 (22.6) -13.9 (28.1) -50.3 (40.9) -22.3 (25.8)
Voiced SS (σ ) 11.6 (20.6) 17.9 (40.4) 24.7 (40.7) 26.2 (46.0) 12.8 (16.5)
Fricatives MS (σ ) 8.9 (16.3) 15.2 (35.1) 17.3 (25.0) 24.9 (41.6) 10.7 (15.7)

DD (σ ) 9.2 (24.5) 4.4 (28.8) 3.9 (42.8) 0.5 (43.8) 4.9 (23.5)
Nasal SS (σ ) 17.0 (29.8) 14.3 (10.5) 15.6 (17.1) 26.0 (23.2) 25.7 (36.0)
Consonants MS (σ ) 11.4 (26.3) 5.7 (6.2) 12.2 (13.4) 13.6 (13.7) 16.1 (35.8)

DD (σ ) 9.4 (24.4) 15.5 (23.4) 25.7 (34.4) 21.4 (32.0) 17.4 (26.2)
Oral SS (σ ) 12.9 (23.3) 12.8 (17.9) 16.7 (34.2) 22.4 (38.1) 16.6 (37.7)
Vowels MS (σ ) 11.8 (15.2) 16.7 (14.8) 17.0 (30.7) 20.1 (29.5) 14.5 (25.4)

DD (σ ) 1.5 (28.5) 5.8 (26.6) 4.4 (35.7) 15.6 (56.1) 3.1 (40.4)
Nasal SS (σ ) 9.0 (23.2) 7.5 (9.7) 14.2 (24.6) 22.6 (32.7) 13.6 (23.6)
Vowels MS (σ ) 9.2 (12.8) 6.6 (7.0) 13.2 (20.5) 19.4 (18.2) 10.6 (12.1)

DD (σ ) 8.3 (27.5) 9.4 (31.3) -6.1 (52.6) -3.4 (57.1) 7.2 (25.0)
All SS (σ ) 12.8 (22.2) 13.5 (20.6) 18.9 (34.3) 22.8 (37.7) 15.1 (29.8)
phones MS (σ ) 11.3 (16.1) 11.3 (14.8) 16.4 (26) 20.3 (29.9) 13.0 (21.5)

DD (σ ) 3.49 (28.2) 0.7 (30.2) 3.7 (39.8) 13.0 (50.6) 3.6 (34.2)

Figure 1: Distribution of Start Shift - SS (above) and Midpoint Shift - MS (below) values3 given for the control
group and per pathology. Each bin refers to a shift of 1 frame (10ms).
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mal and dysarthric speech. Measures proposed in
3.2 are computed for each phone and averaged over
the different pathologies present in the corpus (see
section 3) and phonetic categories. The phonetic
categories considered in this study are unvoiced plo-
sives, voiced plosives, unvoiced fricatives, voiced
fricatives, nasal consonants, oral and nasal vowels,
providing 634, 293, 246, 1199, 228, 2115 and 223
phones respectively. Table 2 depicts the average val-
ues for SS, MS and DD measures and their standard
deviations, all computed per pathology and phonetic
category. Measures coming from the control speak-

ers are also provided.

4.1. Control speakers vs. Pathologies

Regarding the overall set of phones, we observe that
control speakers obtain measure values quite similar
to those of LSD patients. On the other hand, there is
much more variability among the other pathologies,
illustrated by higher standard deviation values,
notably for CA patients. Regarding measures per
phonetic category, we can observed that :
- a better alignment is reached for control speakers



on the voiced plosives, compared with all the
pathologies;
- alignments on the unvoiced plosives and voiced
fricatives for both the control speakers and PD
patients are quite similar, even DD are shorter for
PD patients; similar behavior can be noted for the
nasal vowels;
- values reached by LSD patients on the nasal
consonants and vowels are better than those of the
control speakers (with very low σ values). This can
be explained by the hypernasality usually observed
with mixed dysarthria. However, this behavior is
not clearly observed here with ALS patients, also
associated with a mixed dysarthria, for which much
more variability is observed notably on the DD
values;
- better values are reached on the unvoiced fricatives
for LSD and PD patients compared with the control
speakers while close values are observed for both
other pathologies ;
- voiced plosives (fricatives) outperform unvoiced
plosives (fricatives) for control speakers whereas
the opposite is not systematically observed over
pathologies. This could be caused by anomalies
such as the voicing of voiceless consonants or
the phenomena of spirantization (presence of low
intensity friction noise in place of silence observed
during "normal" plosive production) observed on
pathologies.

4.2. Dysarthric speech

By comparing measure values over the different
pathologies, we can note that :
- similar behavior is rather observed among ALS and
PD patients on unvoiced plosives (with best values
reached by ALS compared with the control speak-
ers), among LSD and PD patients on voiced plosives
and unvoiced fricatives ;
- ALS patients present the worst values on voiced
plosives with the largest variability;
- a large variability is observed among LSD, ALS,
and CA patients regarding the voiced fricatives,
compared with PD patients, who reach the lowest
values by far;
- LSD patients show the lowest values for the nasal
consonants and vowels, the PD patients exhibiting
the largest variability on the nasal consonants, es-
pecially for SS and MD values. Similar behavior is
observed with the LSD patients on the oral vowels,
the ALS, CA, and PD patients still exhibiting a very
large variability ;
- CA patients are mostly associated with the worst
values and the largest variability.
In order to complete these observations, figure 1 dis-
plays the SS (above) and MS (below) distributions3

for all the phones in terms of frame numbers be-
fore (negative values) or after (positive values) the

manual segmentation boundaries (0 bin refers to a
shift between automatic and manual segmentation
less than 1 frame i.e. less than 10ms). Consider-
ing that the range of acceptable values is from -2 to
2 frames (range usually used in phone segmentation
evaluation), this distribution shows that patients suf-
fering from PD or LSD present the smallest number
of SS and MS values over this range. For instance,
only 12.9% and 13.2% MS values with LSD and PD
respectively are over this range compared to 21.7%
and 28.5% with ALS and CA patients respectively.

4.3. Discussion

The observations reported in the previous sections
highlight a quite large heterogeneity of behaviors
depending on phonetic classes between pathologies,
but also within a same pathology. Except the CA
patients for which the automatic system encounters
constant difficulties whatever the phonetic category
it deals with, its behavior can be very different with
the other pathologies depending on the phonetic cat-
egories. Concerning the CA patients, the constant
difficulties encountered by the automatic system can
be directly linked to the articulatory imprecision
cluster defined in the Mayo classification [5] for the
ataxic dysarthria, leading to the production of im-
precise consonants and distorted vowels. Addition-
ally, these patients, as expected, present the lowest
perceptual speech rate among all pathologies, which
can also explain the difficulties of the automatic sys-
tem. The imprecision of consonants characterizes
also the mixed dysarthria related to ALS and LSD
pathologies as well as, with a more moderate level,
the hypokinetic dysarthria related to PD pathology.
However, this feature is not so clear when compared
with the control speakers (best values reached by
ALS patients on the unvoiced plosives, best values
for LSD and PD patients on unvoiced fricatives, both
compared to the control speakers). Moreover, obser-
vations done on ALS and LSD patients are not so
consistent since LSD patients reach the best values
on all the phones and present the highest Dysarthria
Severity Degree values.

5. CONCLUSION

The observation of the behavior of a straightfor-
ward automatic speech processing tool when ap-
plied on dysarthric read speech produced by patients
suffering from different pathologies has shown the
very large variability that patients can demonstrate
in their production of phonetic categories and their
alterations. These observations may explain the dif-
ficulties of the automatic speech processing tools
when they are faced to dysarthric speech. In future
works, this study will be pursued on more patients,
still on read speech but also on spontaneous speech.
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