
STRUCTURED VARIABILITY IN ACOUSTIC REALIZATION: 
A CORPUS STUDY OF VOICE ONSET TIME IN AMERICAN ENGLISH 

STOPS 
 

Eleanor Chodroff, John Godfrey, Sanjeev Khudanpur, and Colin Wilson 

 
Johns Hopkins University 

chodroff@cogsci.jhu.edu, godfrey.jack@gmail.com, khudanpur@jhu.edu, wilson@cogsci.jhu.edu 
 

ABSTRACT 
 

Talkers differ greatly in the acoustic realization of 
speech sounds, a source of signal variation that must 
be overcome by human and machine listeners. The 
present study examined talker variability in voice 
onset time (VOT) across the six word-initial stop 
consonant categories (/ptkbdg/) of American English. 
Employing a large corpus of productions from more 
than 100 speakers, we replicated previous findings of 
significant variation in overall and stop-specific VOT 
means. However, we also identified several statistical 
generalizations within and across phonetic patterns of 
individual talkers. Speaking rate accounted for a large 
portion of VOT variance, with talkers differing 
considerably in the strength of this relationship. Stop 
category means showed high pairwise correlations, 
particularly among /ptk/. Additionally, stop-specific 
means and variances were highly correlated. The 
structured variation present in VOT could be exploited 
by both listeners and automatic recognition systems to 
facilitate robust perceptual adaptation from limited 
exposure to novel talkers.  
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1. INTRODUCTION 
 

The acoustic realization of a given speech category 
varies substantially across talkers, as demonstrated by 
studies of vowels [24], fricatives [16], and stop 
consonants [1, 31]. Talker variability presents a 
challenge to human and machine speech recognition: 
for example, humans show impaired identification of 
isolated vowels [2] and entire words [20] when stimuli 
are presented from multiple talkers. Nevertheless, 
listeners display a remarkable ability to adapt to 
specific talkers and generalize talker characteristics 
across sound categories. Models of talker adaptation 
aim to account for these abilities, and the presence of 

structured variation across talkers may play a crucial 
role in adaptation and generalization mechanisms. 

Individual differences in speech production have 
been noted for various speech categories, with a clear 
example observed in vowel production. Differences in 
the frequencies of F1 and F2 across 10 vowels and 76 
speakers were examined in [24]. This classic study 
found wide variation in the population, particularly 
with respect to gender and age, but relatively less 
variation internal to individual speakers. In particular, 
the “vowel systems” of different speakers form 
overlapping but generally congruent shapes in F1-F2 
space. This result is well explained by the dependence 
of formant frequencies on talker-specific vocal tract 
length, shape, and size; crucially, this finding shows 
that a structured vowel space emerges within and 
across speakers. To the extent that an individual’s 
vowel space resembles that of the population, a 
listener may abstract over talker-specific formant 
shifts to infer category labels (e.g. [12, 26, 27]).   

Similar to findings in vowel production, individual 
differences have also been noted in fricatives. [16] 
assessed spectral center of gravity (COG) in the /s/-/ʃ/ 
distinction in CV syllables produced by 20 speakers. 
While talkers varied in their mean, variance, and 
distributional overlap of /s/ and /ʃ/ COG production, 
the COG for /s/ was found to be consistently higher 
than that for /ʃ/. Furthermore, the majority of talkers 
showed relatively little distributional overlap in their 
/s/-/ʃ/ production. These patterns reveal systematicity 
in the acoustic realization of the contrast, and support 
a mechanism of adaptation that targets the COG 
dimension as opposed to /s/ and /ʃ/ separately. 

Individuals also vary significantly in average 
voice onset time (VOT) and associated durational 
properties such as overall speaking rate. [1] examined 
8 speakers’ production of word-initial, voiceless stop 
consonants in CVC words. Even after controlling for 
speaking rate, individual differences in VOT 
remained. Expanding on this study, [31] controlled for 
speaking rate and place of articulation. Ten speakers 



produced repeated CV syllables (/pi/, /ti/, /ki/) at 
various rates of speech. The effect of speaking rate on 
VOT varied significantly across talkers; however, the 
magnitude of the effect was consistent across place of 
articulation within a speaker, suggesting at least some 
within-talker regularity in VOT production.  

Previous studies have provided data on population 
VOT values [6, 15, 32, 34]; however, many studies do 
not examine talker-specific variation (cf. [9, 32]). 
While [6] surveyed over 600 speakers in the TIMIT 
corpus [10], that corpus provides too little data from 
individual speakers to allow for robust estimation of 
talker-specific VOT parameters (cf. estimation effects 
of gender). In [32], VOT was automatically measured 
from 19 speakers in the Buckeye corpus [25]. 
Similarly, [9] measured VOT from four speakers in 
the Boston University Radio News corpus [21]. While 
both studies observed considerable individual 
differences, generalizations of cross-talker phonetic 
patterns were limited by the statistical analyses and/or 
sample size. In contrast to the previous studies, the 
current study examined both talker variability as well 
as systematicity in the VOT of word-initial, prevocalic 
stop consonants in American English read speech. We 
used a large corpus and mostly automatic methods. 
This allowed us to measure approximately 68,000 
tokens from more than 100 speakers, including all six 
stops (/ptkbdg/) in many sentential contexts. 

The present more extensive study provides further 
insight into the range and limits of talker variability 
across stop consonant categories. Significant 
individual differences were identified in stop-specific 
VOT means and in the effect of speaking rate on VOT. 
Additionally, structured variation was observed in 
pairwise correlations of stop-specific talker means and 
standard deviations. The presence of this structure 
transcends individual variability and may facilitate 
talker adaptation by both humans and machines.  
 

2. METHODS 
 

2.1. Corpus description 
 
The Mixer 6 Corpus contains speech from over 600 
talkers, recorded over three separate sessions [5]. In 
each session, an interview, transcript reading, and 
phone call were recorded. The following analysis 
employs the transcript portion of 129 native English 
speakers, for which three sessions were recorded. The 
transcript contains randomly selected utterances from 
previously collected spontaneous speech in the 
Switchboard corpus [11]. These are therefore naturally 

occurring sentences, not specifically constructed for 
this study. For each session, the talker recorded up to 
15 minutes of 335 different utterances, read in order. 
The median utterance length was 7 words (range: 1-
17).  
 All of the speakers studied here were born in the 
United States, and approximately half in the 
Philadelphia region. Sixty-eight speakers were from 
Pennsylvania, 32 from other mid-Atlantic and New 
England regions and 29 from other areas of the United 
States. Ages ranged from 19 to 87 years old (median: 
27). Speaker gender was roughly balanced (60 male). 
 
2.2. Corpus preparation 
 
The transcript portion of the corpus was audited for 
reading and recording errors with automatic and 
manual methods. Each session was submitted to HTK-
based automatic speech recognition with acoustic 
models trained on the Wall Street Journal corpus [7]. 
The output was evaluated against the intended speech 
of the transcript using the NIST Score-Lite system 
[19], which produced a word error rate for each time-
aligned sentence. Sentences with less than 100% 
accuracy were manually audited through listening.	  

The cleaned version of the transcript was force-
aligned to its corresponding audio segment with the 
Penn Phonetics Lab Forced Aligner (PFA) [33]. 
Word-initial, prevocalic stop consonants were located 
and further processed with AutoVOT [13, 29]. 
AutoVOT uses subphonemic processing to identify the 
stop release and vocalic offset of stop consonants, 
corresponding to standard boundary locations for 
positive VOT measurements. The window of analysis 
was extended from the PFA boundaries 30 ms in both 
directions for voiceless stops and 10 ms in both 
directions for voiced stops. The minimum VOT 
duration was set to 15 ms for the voiceless stops and 4 
ms for the voiced stops. In addition to the automatic 
measurements, the VOT of approximately 3,000 stop 
consonants was manually measured. Comparison with 
the AutoVOT output yielded a root mean square 
deviation of 12.9 ms (cf. [28]). As described in section 
2.3, outliers were removed to minimize noise in the 
dataset. The automatic measurement may be further 
improved by training a corpus-specific acoustic 
classifier.     
 
2.3. Acoustic analysis 
 
VOT was measured as the duration between the 
AutoVOT-defined stop consonant boundaries or, if 



available, manually placed boundaries. Speaking rate 
was measured as the mean word duration per utterance 
from the PFA boundaries using Praat [4]. Only stop 
consonants followed by a primary-stressed vowel were 
analyzed, and with the exception of ‘to’, function 
words were retained in the analysis. VOTs 2.5 
standard deviations away from the group category 
mean were considered outliers and excluded from 
analysis. There was a total of 68,456 stop consonants, 
or an average of 531 stop consonants per talker (range: 
320-726). For each talker there were 46-100 tokens of 
/p/ (median: 72), 18-78 tokens of /t/ (median: 46), 56-
117 tokens of /k/ (median: 90), 72-133 tokens of /b/ 
(median: 100), 68-191 tokens of /d/ (median: 140), 
and 59-118 tokens of /g/ (median: 92).  
 

3. RESULTS 
 

Average VOT was calculated both across and within 
talkers for each stop category. Population values are 
shown in Table 1. The ranking of VOT means across 
stop consonants was largely in agreement with early 
studies on VOT [15, 34], larger corpus studies [6, 32], 
as well as cross-linguistic patterns [8]. However, [6, 
15, 34] found that /k/ had a marginally longer mean 
than /t/ (see also [8]), whereas the present study 
reports the opposite pattern (see also [32]). In detail, 
74 speakers had an increasing VOT ranking of /b-d-g-
p-k-t/, 23 had /b-d-g-k-p-t/, and 14 had /b-g-d-p-k-t/, 
with the remaining 16 showing various other rankings. 
As seen in Figure 1, considerable individual 
differences were also found in stop-specific means and 
standard deviations; however, these two parameters 
are strongly correlated within each stop category (/p/: 
r = 0.55; /t/: r = 0.48; /k/: r = 0.47; /b/: r = 0.74; /d/: r 
= 0.63; /g/: r = 0.42; all categories collapsed: r = 0.93; 
ps < 0.001). These correlations suggest structured 
rather than unrestricted variation in VOT patterns.  

 
Table 1. Population means and standard 
deviations of VOT (ms). 
 

Stop Mean SD  
P 50.8 21.1 
T 60.5 21.8 
K 54.4 20.2 
B 8.7 5.0 
D 13.8 8.7 
G 17.2 10.6 

 
A linear mixed-effects model [3] was used to 

analyze the influence of voice, place of articulation, 

and speaking rate on VOT in ms (Model 1). Model 1 
included fixed and interacted effects of voice (sum-
coded, voiceless = +1) and place of articulation (sum-
coded, labial reference category), a main effect of 
speaking rate (in s), maximal random-effect structure 
for talker, and a random intercept for word. For the 
mixed-effects analyses, a t-value greater than 2.0 was 
considered significant (but many effects of interest far 
surpassed that criterion). There were significant main 
effects of voice (𝛽 = 21.54, t = 31.23), place (dorsal:  
𝛽 = 3.62, t = 4.10), and speaking rate (𝛽 = 21.50, t = 
13.38); however, the main effect of coronal place was 
not significant (𝛽 = 1.50, t = 1.67). As estimated by 
the model, voiceless stops were approximately 42 ms 
longer than voiced, dorsal stops were 8 ms longer than 
labials, and coronal stops were 3 ms longer (n.s.). 
VOT also increased by about 2.1 ms for every 100 ms 
increase in average word duration. Interactions of 
place and voice were not significant (dorsal×voice: 𝛽 
= -1.15, t = -1.31; coronal×voice: 𝛽 = 1.12, t = 1.26).  

 
Figure 1. Talkers’ mean VOT (ms) 

plotted against corresponding sd. 
 

 
 
Additional mixed-effects models of VOT were 

used to further explore individual variability. Each 
subsequent model had the same fixed structure as 
Model 1, differing only in the talker random effects 
structure. Model 2 eliminated all random effects for 
talker; Model 3 allowed only the VOT intercept to 
vary by talker; Model 4 estimated an intercept and 
separate slopes of place and voice for talker; and 
Model 5 added the interaction of place and voice to 
the random structure of Model 4, and thus differed 
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from Model 1 only in excluding the random slope for 
speaking rate. 

Model 1 significantly outperformed all of the 
other models on the likelihood ratio test (M2: 𝜒!(28) = 
9620; M3: 𝜒!(27) = 5860; M4: 𝜒!(18) = 582.5; M5: 
𝜒! (7) = 86; ps < 0.0001) as well as the more 
conservative BIC comparison (M1: 540940; M2: 
550248; M3: 546499; M4: 541322; M5: 540948). This 
result reveals significant individual variation in the 
effect of each stop category (place x voice) on VOT, 
as well as individual variation in the effect of speaking 
rate. (Note however that the practical significance of 
each random effect remains to be investigated.) 

In spite of significant individual differences, 
talker-specific category means are strongly correlated 
(Table 2). This is particularly true for the voiceless 
stops, and for homorganic coronal and dorsal pairs, 
indicating that talker-specific effects are similar for 
these categories. While it may benefit listeners to 
estimate stop-specific VOTs for individual talkers, 
adaptation at a more general level (e.g., at the level of 
overall VOT or speaking rate) could also be effective 
and would possess greater statistical strength. 

 
Table 2. Correlations of talkers’ mean 
VOTs. The asterisk indicates p < 0.003, 
alpha-corrected for multiple comparisons.  
 

 P T K B  D G 
P 1 0.81* 0.82* 0.09 0.47* 0.25 
T 0.81* 1 0.80* -0.01 0.59* 0.14 
K 0.82* 0.80* 1 0.11 0.50* 0.42* 
B 0.09 -0.01 0.11 1 0.05 0.43* 
D 0.47* 0.59 0.50* 0.05 1 0.43* 
G 0.25* 0.14 0.42* 0.43* 0.43* 1 

 
4. CONCLUSION 

 
Talkers vary considerably in their production of VOT 
in word-initial stop consonants, extending findings 
from [1] and [31] to more realistic speech and all six 
stop consonant categories. The best-performing model 
indicates that full perceptual adaptation would require 
estimating talker-specific effects on each stop 
category, as well as on the relationship between VOT 
and speaking rate. Phoneme identification, however, 
may not require such precision. Population estimates 
of stop-specific effects or talker-specific estimates of 
the individual’s offset (i.e., intercept) may be 
sufficient for accurate classification. The correlations 
of talker means across stop categories, and with 
corresponding stop-specific standard deviations, also 

reveal important structure within talker variation. 
Recent models of talker adaptation propose a form of 
incremental adaptation that is generally in line with 
this proposal (e.g., [14, 18]). As information about a 
particular speaker accumulates, a listener may refine a 
default model of VOT using knowledge of population 
variation and covariation across categories.  

Previous perception studies have also 
demonstrated listeners’ ability to generalize talker 
characteristics across stop consonant categories. 
Listeners are able to identify that a long /k/ is more 
characteristic of a talker with a long /p/ even without 
hearing the talker produce the /k/ category [30]. 
Furthermore, in imitation, listeners extrapolate a 
talker’s characteristically long VOT of /p/ to /k/, again 
without prior exposure [17]. While [30] found that 
listeners are sensitive to the correlation between a 
talker’s short-lag VOTs across categories in 
perception, [17] did not find this effect in imitation. In 
the case of imitation, a speaker may be limited in 
producing a shortened VOT. Nonetheless, the strong 
correlations of talker means across voiceless stop 
categories are highly compatible with the perceptual 
findings of [30] and [17], and with models of 
generalization across categories [18, 22, 23]. 

While the present study documented significant 
structured variation in stop consonant VOTs, there are 
some limitations to these findings. First, only positive 
VOTs were analyzed in the corpus. Further 
measurements may reveal additional structure in both 
positive and negative VOT (particularly in the voiced 
stops). Secondly, because VOT is not the only cue to 
stop consonant voice, correlations with other acoustic-
phonetic cues may facilitate talker adaptation and 
subsequent categorization. Third, the present results 
were limited to word-initial stops in stressed syllables, 
and structured variability within and across other 
context should be investigated. Finally, further 
research will be necessary to determine how individual 
variation and regularity in stop consonant VOT are 
best integrated into formal models of talker adaptation.  
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