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ABSTRACT 
 
We used Auditory/visual masks to investigate how 
the availability of speech signals governs speech 
perception. Stimuli were videos of a talker uttering 
sentences. The auditory mask consisted of speech 
shaped noise; the visual mask, a circular patch 
obscuring talker’s mouth region. Auditory signals 
were quantified by the glimpse proportion (GP); 
visual signals by visual entropy (VE), a measure 
based on visual change. Auditory stimuli mixed with 
the noise at -3 dB SNR were presented paired with 
the talker’s static or moving face (full vs. masked 
face) for speech identification. Speech identification 
was more accurate with the moving face (visual 
benefit); with greater benefit for the full than 
masked face. The GP correlation with speech 
identification scores was highest in the static face 
condition. The visual benefit was correlated with the 
VE but only when the latter correlated highly with 
mid-frequency speech energy of the auditory signal. 
 
Keywords:  visual speech, auditory and visual 
speech processing, visual form and timing cues. 

1. INTRODUCTION 

Speech communication often occurs while other 
competing auditory and/or visual events (i.e., noise) 
take place. The perception of speech corrupted by 
noise is likely based on those fragments of the 
speech signals whose energy exceeds the masker by 
some amount [1] plus the available visual speech 
(i.e., talker’s face/head motion) information. A great 
many studies have examined how auditory masking 
affects speech perception, while other studies have 
examined the influence of visual speech. The goal of 
the current study is to examine how masking the 
auditory and visual speech signals affects speech 
perception, with a particular interest in how 
perception may be affected by the relationship 
between these signals.  

When visual speech is available, particularly 
when the mouth region is clearly visible, speech 
perception is robust to auditory noise [2]. Part of this 
facilitative effect has been explained in terms of the 
complementary nature of auditory-visual (AV) cues 
for speech [3]. Thus, even though the auditory signal 
has been degraded by noise, the impact of this on 
speech perception is minimized because visual 

speech provides cues for missing information. Two 
factors have been proposed that may condition any 
visual speech facilitation effect.  

The first concerns the nature of visual speech 
cues and whether these are generated from a 
particular face region. Here, a relevant distinction is 
between oral movements and including perioral and 
head movements [4, 5]. It has been argued that 
mouth motion provides both speech form and timing 
cues whereas the other movements provide only 
speech timing cues [5]. Given this, the basis for 
visual speech facilitation would change depending 
on whether the mouth region was masked or not.    

The other factor is the redundancy between the 
AV signals. For example, it has been shown that in 
the speech detection task, AV facilitation only 
occurred where there was a high correlation between 
the AV signals [e.g., 6]. Here, the degree to which 
the auditory and visual signals are correlated 
provides a proxy measure of redundancy at the 
signal level.  In [6], the visual signal was quantified 
by change in lip-height and the auditory signal by 
acoustic energy fluctuations in the F2 spectral 
region. Whether the degree of AV correlation has an 
impact on speech identification has not been tested. 
Further, it should be noted that the visual 
quantifications made in [6] involved both visual 
speech form and timing information. To date, little 
research has been conducted on how to quantify 
timing information or the degree to which visual 
signals that provide only timing information are 
correlated with auditory signals. 

In the current study, then, we investigated how 
speech perception is affected by the availability of 
auditory and visual signals by examining (1) speech 
perception in noise using three conditions that varied 
the degree of the availability of visual speech (i.e., 
the nature of visual speech cues); (2) the correlation 
between an index of auditory and visual information 
and speech identification; and (3) the relationship 
between the degree of AV correlation and speech 
identification. The three conditions consisted of an 
Auditory Only (AO) baseline condition in which 
auditory speech mixed with noise was accompanied 
by a static face; an AV condition by a moving full-
face; and an AV with a mask (AVm) condition by 
moving face in which the mouth region had been 
masked. 

Three specific predictions were made. First, 
speech perception performance in the AO baseline 



condition should be principally determined by the 
availability of the auditory signal. Here, we used the 
glimpse proportion (GP) index to examine the extent 
to which this measure of signal availability was 
correlated with correct speech identification scores.  

Second, speech perception for the two moving 
face conditions will be influenced by the type [5] 
and the amount of visual information [6]. With 
regards to the type, we examined the extent to which 
visual form and timing information contribute to 
speech perception in noise by comparing 
performance across the three conditions. That is, by 
investigating the contributions that oral and perioral 
regions make to speech perception in noise, we 
aimed to pin-down the relative importance of 
different “types” of speech-related motion for 
speech perception. With regards to quantifying the 
amount of visual information, we used the VE (see 
below for details) based on a view of information 
outlined by Shannon [7] in which information 
content is inversely proportional to the probability of 
occurrence (i.e., less predictable elements carry 
more information).  

Third, it has been suggested that articulatory 
movements and other closely related movements 
such as chin and cheek motion are well correlated 
with acoustic properties such as intensity varying 
over time  [8]. Given this, it is expected that changes 
in GP and in VE over time be correlated. In order to 
examine how the correlation between AV signals 
relates to visual benefit in speech perception, we 
first calculated AV correlations between the VE 
values and acoustic energy fluctuations in the F2 
spectral region from [non-degraded] auditory signal.  
Then we determined the degree to which these were 
correlated with the identification performance. 

2. METHOD 

2.1. Participants  

Twenty-seven undergraduates of the University of 
Western Sydney participated in the experiment for 
course credit. All were native speakers of English 
and none reported any hearing loss and reported 
normal or corrected-to-normal vision. 

2.2. Materials 

The stimuli consisted of AV recordings of a female 
native Australian English talker (in her early 
twenties) uttering 200 IEEE sentences [9]. The 
recordings were made using a Sony PMW-EX1 
video camera capturing MPEG4-AVC/H.264, 
(1280 × 720/50i) and audio captured at 48,000 Hz 
from an external microphone (Røde NTG-3). For the 
recording session, the talker was seated in an IAC 

booth 130cm from the camera and recorded against 
a light blue background. Illumination and the 
talker’s distance from camera were held constant 
across items. Sentences were spoken with a neutral 
expression. 

Auditory stimuli: The auditory portion of each 
video was processed separately to normalize across-
token. The talker specific speech shaped noise was 
created from the long term spectrum of all of the 
recorded tokens, and added to the speech at -3dB. 
The average duration of the spoken utterance was 
2107 ms (SD = 242 ms) and the RMS level of each 
mixture was set to a fixed value of 0.04. The 
surrounding silent portion preceding and following 
the sentence were retained (500 ms on each side). 

Visual stimuli: The video portion of the 
recordings was trimmed so that only the lower 
region of the face (from the bottom of the eyes 
down) was presented (as in [5]). On the monitor, the 
video stimuli subtended a height of 12.10 of visual 
arc and a width of 15.70. The files were played at a 
screen resolution of 640 x 480 with 32-bit in colour 
(for the moving face) or grayscale (for static face) at 
50 fps. To match the audio signal, approximately 
500 ms of the video signal was retained before and 
after the sentence. Three types of visual stimuli were 
constructed (See Figure 1): Static-face, baseline; 
Full-face video; and Masked-face video, where the 
moving face with the oral region was obscured by 
superimposing a gray circular patch (radius 20 of 
visual arc) to cover the mouth movements . 

The noise mixed auditory stimuli were paired 
with each of the three types of visual stimuli (N = 60 
x 3). Three versions of stimulus list were constructed 
each consisting of three item blocks (Static-face, 
Full-face, Masked-face; each consisting of 60 items) 
so that across versions, each sentence target 
appeared with each visual (experimental) condition 
without being repeated within a version. 
 

Figure 1: A depiction of how the movements of 
the talker’s face (in colour) were presented in the 
experiment. In the Baseline, a grey-scale picture of 
the talker with the mouth closed was shown (grey-
scale was used so the viewer would learn not to 
expect the face to move). 

 
 

Stimulus 

Presentation  

Conditions 

Static face: Baseline  

Moving full-face (AV) 

Moving masked face 
(AVm) 

 
Participants were randomly allocated to one of 

the 3 versions; care was exercised to keep the total 



number of participants equal across versions.  For 
each version, a Latin square design was used so that 
the presentation order of the three conditions was 
counterbalanced across the three participant groups.  
The presentation order of the items within the block 
was randomized. 

2.3. Procedure 

Participants were tested individually in a sound 
attenuated IAC booth. The stimuli presentation and 
typed response data collection were controlled using 
Psychtoolbox [10]. The audio was presented through 
a Sennheiser HD-555 headset at a comfortable level, 
which was held constant for every participant.  

Participants were informed that they would see a 
talker’s face (either static or moving) while at the 
same time hearing speech in noise. They were told 
that their task was to type out as many of the words 
that they had heard. Participants were informed 
about the catch trials and that they should not make 
a response to these. For practice, 3 stimuli including 
1 catch trial were presented before each 
experimental condition (9 in total). The experiment 
lasted for approximately 60 minutes. 

3. RESULTS & DISCUSSION 

3.1. Speech Identification 

In scoring the identification data, all keywords (5 in 
each sentence) were scored by parsing the typed 
response and using a dictionary of common spelling 
mistakes. Percentage correct word identification was 
calculated as the measure of speech recognition for 
each condition. Figure 2 presents the mean 
proportion response accuracy for each of the 
experimental conditions 
 

Figure 2:  Mean proportion accuracy for speech 
identification as a function of visual speech type: 
A = Static face; AVm = moving Masked face; AV 
= moving Full-face.  Error bars show 95% 
confidence intervals. 

 
The response accuracy data were analysed by an 

ANOVA on the participant data (collapsed over the 
different items). There was a main effect of 
presentation condition, F(2,52) = 70.50, p < 0.05. 

The Full-face stimuli were responded more 
accurately than the Masked face stimuli, F(1,26) = 
58.47, p < 0.05. The latter was more accurate than 
then baseline Static face stimuli, F(1,26) = 16.32, p 
< 0.05. 

3.2. Speech Identification & Signal Availability  

3.2.1. Auditory Signal: Glimpse Proportion 

A correlation test was conducted between the GP 
(proportion of a frame in which the speech energy 
was greater than 0 dB about the masker) and 
identification scores for each sentence in each 
presentation condition. Figure 3 shows the data 
distributions. As expected the correlations for the 
auditory only (static face) was significant, r = 0.44; 
likewise was the correlation with the AVm 
condition, r = 0.36. The correlation for the Full-face 
condition was smaller, but was still significant, r = 
0.20. This pattern of correlations fits with the 
straightforward assumption that GP will predict 
speech intelligibility when the perceiver can only 
use the bottom-up auditory signal [11]. Here, the 
performance is better and the correlation is reduced 
when the listener has access to other non-auditory 
speech related information. 

 
Figure 3: Mean proportion correct as a function of 
glimpse proportion (GP) across the three 
presentation conditions (A, AVm and AV). 
Pearson correlation coefficients and p-values are 
shown. 

 

3.2.2. Visual Signal: Visual Entropy  

To determine whether speech identification 
performance varied as a function of visual 
availability, we calculated VE, based on the running 
sum of colour differences (in CIELab colour space) 
between successive video frames (50 fps). The VE 
score was low when there were few changes across 
frames and high when there were many.  

Figure 4 provides a graphical example of the 
measures used for one of the IEEE sentences. The 
bottom panel shows three VE curves, which were 
derived from the full face (VE_AV); the masked 
face (VE_AVm) and the mouth region (VE_m, 



calculated by subtracting the VE_AVm from the 
VE_AV) respectively. As can be seen, the curves 
share some morphological features but the VE from 
the masked face is generally flatter. 

 
Figure 4: Shown are Energy in the 1.5-2.5 KHz 
region, mid-frequency energy (MFE), Glimpse 
proportion (GP) and VE scores for the sentence 
“He ran half way to the hardware store”. 

 
The VE measure has a similar motivation to that 

recently used in speech identification studies where 
a metric of information is derived based on signal 
change (see the cochlear scaled entropy measure of 
[12]). It is nonetheless novel as applied to visual 
speech. Given this, we first aimed to determine 
whether it would capture the basic relationship 
between changes in the level of mid–frequency (1.5-
2.5 KHz) speech energy (MFE) and changes in the 
front part of the vocal tract [13]. The correlation of 
MFE with VE_AV, VE_AVm and a measure more 
likely to capture mouth motion, VE_m was 
significant (P < 0.05) with r values of 0.33, 0.24 and 
0.31, respectively. The lower correlation for the 
MFE and VE_AVm relationship makes sense in that 
here mouth motion per se does not make a direct 
contribution to the VE.  

How was the VE measure related to identification 
performance? Figure 5 shows the proportion of 
correct recognition of each word of the sentences 
across participants, as a function of the mean VE of 
that word. 

 
Figure 5: Proportion correct word identification as 
a function of visual entropy (VE) for Full-face 
(AV) and Masked face AVm conditions. 

 

There was a small but significant correlation 
between performance and VE in both conditions 
[Pearson's product-moment correlation: df=781, 
r=0.12, p<.001, for both AV and AVm], indicating 
that the amount of movement is associated to a small 
degree with the observed visual advantage.  

3.3. Speech Identification & AV Correlation  

To examine how the visual and auditory signals 
might make a linked contribution to speech 
perception in noise, we calculated the correlation 
between VE (AV and AVm) and mid-frequency 
speech energy for each sentence (see above). From 
this, two groups of items were formed: a low 
correlation group (r = 0.1 to 0.3) and a high one (r = 
0.4 to 0.56). The correlation between the VE and 
correct percent identification was then calculated for 
each group (Figure 6). A significant correlation was 
observed only between the high-VE/speech-energy 
group and visual benefit, r = 0.20, p = 0.054 for the 
AV full face scores. This result suggests that 
perceivers might be sensitive to particularly visual 
speech gestures which are correlated with auditory 
signals and use this to aid speech perception.  
 

Figure 6. AV Benefit (%, Vadv) as a function of 
the degree (split-half low and high coefficients, C) 
to which the visual signal correlated with speech 
energy for Full-face (AV, top row) and Masked 
face (AVm, bottom row).  

 

4. CONCLUSION 

We showed AV speech perception was related to the 
type and the amount of visual information. The 
association of a measure of visual speech 
information (VE) with speech identification scores 
was clearest for utterances where the face/mouth 
motion had a high correlation with speech energy. 
This indicates that under these conditions mouth 
motion may provide a scaffold for speech glimpse 
integration. 
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