
ON THE ROLE OF DISCRIMINATIVE INTELLIGIBILITY MODEL FOR
SPEECH INTELLIGIBILITY ENHANCEMENT

Maryam Al Dabel, Jon Barker

Department of Computer Science, University of Sheffield, UK
mmaldabel3@sheffield.ac.uk, j.p.barker@sheffield.ac.uk

ABSTRACT

This paper uses listening tests to directly evaluate
two speech pre-enhancement algorithms that were
published in earlier work. The models were pre-
viously evaluated using purely objective measures.
The methods under study aim to increase speech in-
telligibility by applying an adaptive spectral shaping
filter to the speech signal. In both algorithms the
shape of the filter is adapted so as to maximise the
intelligibility predicted by an objective intelligibil-
ity model. The first algorithm uses ‘glimpse propor-
tion’ as the measure of intelligibility (i.e. assuming
intelligibility is proportional to the extent of ener-
getic masking). In contrast, the second optimises
the score of a statistical ‘microscopic’ intelligibil-
ity model that measures the degree of discrimina-
tion between the correct interpretation and compet-
ing incorrect interpretations of the utterance. Results
show that a significant intelligibility gain is obtained
when the simple energetic masking model is em-
ployed, whereas the discriminative model currently
fails to provide any intelligibility improvement.

Keywords: Speech pre-enhancement, objective in-
telligibility models, intelligibility enhancement.

1. INTRODUCTION

Speech plays a vital role in modern communica-
tion systems, e.g. public address systems. Mak-
ing speech more intelligible in noise is therefore
crucial. Typically, speech enhancement techniques
(e.g. [11]) are applied to the received signal and at-
tempt to subtract the background noise from the sig-
nal. These techniques often improve speech qual-
ity but fail to improve intelligibility [12]. A con-
trasting strategy available in some applications is to
pre-enhance the speech signal prior to transmission.
These pre-enhancement algorithms attempt to mod-
ify the clean speech in ways that will protect it from
the effects of the predicted noise. In recent years,
large advances have been made in the field of de-
veloping and evaluating such pre-enhancement al-
gorithms [5, 6, 7].

Pre-enhancement algorithms use a range of tech-
niques (e.g. [17, 18, 19, 21, 22, 24]) but generally
they employ strategies that are comparable to those
that talkers themselves adopt to counteract the ef-
fects of background noise (e.g., the Lombard ef-
fect [15]). The acoustic changes in Lombard speech
include increasing the fundamental frequency, in-
creasing the intensity, lengthening vowel duration
and reducing spectral tilt to boost the high frequen-
cies [10, 13, 23]. To imitate such an effect many
pre-enhancement systems use parameters that are
tuned using an estimate of the noise context and with
the goal of optimising some objective intelligibility
measure (e.g. [18, 19, 22]). The weak link is often
the quality of the underlying intelligibility model:
a highly parameterised enhancement system cannot
be reliably tuned against a poorly fitting intelligibil-
ity model.

This paper considers intelligibility optimisation
based approaches to pre-enhancement that have
been recently presented in [1]. These approaches
employ a ‘microscopic’ intelligibility model that is
comprised of an auditory ‘glimpsing’ front-end and
a statistical speech model derived from missing data
automatic speech recognition (ASR) [4]. The model
is termed microscopic because it is designed to make
precise predictions about what words listeners will
hear when presented with a given noise and speech
mixture. In [1] it is argued that a microscopic model
may allow speech pre-enhancement systems to be
precisely tuned, and a number of objective mea-
sures are presented that suggest that the technique
has promise. In this paper we present a listening
study that directly assess the performance of the ap-
proach.

The pre-enhancement approach in [1] optimises
the parameters of an adaptive Spectral Shaping Fil-
ter (SSF). The SSF has been used in many similar
adaptive pre-enhancement systems due to its poten-
tial to provide significant intelligibility gains with
low computational complexity [6]. In contrast, [24]
demonstrates intelligibility improvements using a
fixed SSF – this fixed SSF is used as the reference
method in this paper.

The approach presented in [1] has similarities to



the work of Petkov et al. [14]. Notably, both employ
a statistical speech model and attempt to optimise
the probability of the noisy signal being recognised
correctly. However, whereas the measure in [14]
was computed using statistical speech model derived
from conventional ASR [16], the work in [1] em-
ploys the glimpsing model of auditory masking and
a missing data classification scheme that is designed
to handle the fact that some spectral-temporal signal
regions are masked by noise [4]. Both methods as-
sume the presence of a statistical speech model and
that the speech and noise are known in advance.

The remainder of this paper is organised as fol-
lows. First, a brief overview of the spectral modi-
fication used in this work is explained in Section 2,
followed by an evaluation and comparison with the
reference method in Section 3 and 4. Finally, a dis-
cussion is provided in Section 5.

2. PRE-ENHANCEMENT USING SPECTRAL
SHAPING FILTER

The enhancement system uses a Spectral Shaping
Filter (SSF) that can acoustically modify the speech
in a manner that resembles changes that talkers make
naturally when speaking in the presense of noise.
[15]. The filter pre-shapes the spectrum of the in-
put speech signal by adjusting the gain of the band-
energies. The gains applied to the filters are encoded
in the cepstral domain and represented using the first
four cepstral parameters. In this paper, we use an
adaptive SSF in which these parameters are opti-
mised so as to maximise the predicted intelligibility
of the signal.

In earlier work [1], this concept was presented
and the tuning of the SSF parameters was performed
using two different intelligibility models. In the
first method, the intelligibility was assumed to be
proportional to the degree of energetic masking as
estimated by the ‘Glimpse Proportion’ (GP) mea-
sure [2]. In short, GP uses knowledge of the pre-
mixed speech and noise signals, it computes a time-
frequnency filterbank representation of each, and
computes the proportion of spectro-temporal ele-
ments in which the local SNR would be above a 3
dB threshold. In the second, a more complicated
model was introduced using missing data classifi-
cation [4] known as the Discriminative Intelligibil-
ity (DI) model which in addition to the speech and
noise signals, also employs a speaker-dependent sta-
tistical speech model. The DI model uses hidden
Markov models (HMMs) to represent the speech.
The HMMs are pre-trained using clean speech of
the target speaker. Missing data speech recognition

techniques are employed and the probability of the
correct utterance and the best scoring incorrect ut-
terances is considered. Intelligibility is given by the
difference between these scores. For full computa-
tional details see [1].

Additionally, a fixed SSF is implemented follow-
ing [24]. This fixed SSF uses no knowledge of the
noise source and serves as a performance baseline.
It is motivated by observations in clear speech (for-
mant enhancement [8]) and the reductions of spec-
tral tilt in Lombard speech [13]. It has been demon-
strated that this approach is effective in a large-scale
open evaluation of speech modification algorithms
[6].

3. SUBJECTIVE EVALUATION

In this section we provide the results of a formal lis-
tening test. We contrast a number of speech pre-
enhancement algorithms and also compare the re-
sults to the state-of-the-art. These algorithms are the
original (non-modified) speech (ORG) represented
the baseline; the GP-based modified speech [1] (GP-
OPT); the DI-based modified speech [1] (DIS-OPT);
and finally, as a reference algorithm the spectral
shaping-based modified speech [24] (SS).

Twenty normal-hearing subjects whose age
ranged from 18 to 30 years participated in the lis-
tening tests. The subjects were required to be native
English speakers, with no history of speech and/or
language dis-orders. All were paid for their partici-
pation. Ethics permission was obtained.

The subjective evaluation of the algorithms was
performed using the Grid corpus [3]. The corpus
consists of 34 native English talkers speaking simple
6-word command utterances from a fixed grammar
(e.g. ‘bin green at k zero now’). The algorithms were
tested in 5 noise conditions using a total of 13,600
stimuli (4 algorithms x 680 sentences (34 speakers
x 20 utterances) x 5 conditions) divided into inde-
pendent blocks of 136. The independent block was
drawn at random, without replacement in which a
single subject would hear 34 sentences from each
entry into the 5 blocks (34 x 5 = 170 sentences in
total). The subjects were assigned into blocks in
which;

1. each subject heard one block of 136 (34 utter-
ances x 4 algorithms) sentences in each of the
5 noise conditions;

2. no subject heard the same sentence twice;
3. each noise condition was heard by the same

number of subjects.
Subjects were tested individually in an acoustically-
isolated booth. Stimuli were presented once only.



−9 −6 −3 0 3
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

p
e

rc
e

n
ta

g
e

 c
o

rr
e

c
t 

(%
)

 

 

ORG

GP−OPT

DIS−OPT

SS

Figure 1: The average percentage of utterances
in which the letters and digits were identified cor-
rectly across listeners as a function of SNR.

The task was to identify the letter and digit spoken
and type the heard keywords. Once a participant had
typed a response, the subsequent stimulus was pre-
sented automatically. Null responses were not per-
mitted. The test was completed on average in 45
minutes.

The original and modified speech were corrupted
by speech-shaped noise masker at a range of SNRs:
3, 0, −3, −6 and −9 dB. This masker was sampled
at 25 kHz. The target utterances were mixed with
the masker during the testing procedure (i.e. after the
modification mechanism) at a desired SNR level.

The speech in DIS-OPT and GP-OPT stimuli was
processed using a filterbank Analysis-Modification-
Resynthesis framework. First, the speech signal is
filtered using a bank of 32 gammatone filters with
centre frequencies spread evenly on an equivalent
rectangular bandwidth (ERB) scale between 50 and
8000 Hz with filter bandwidths matched to the ERB
of human auditory filters. After that, the envelope of
each gammatone filter output is computed. This en-
velope is then smoothed by a first-order low-pass fil-
ter with an 8 ms time constant. Then, the smoothed
envelope is down-sampled to 100 Hz. Following
downsampling, the amplitude envelope is squared
and logged to turn the amplitude into the log-energy
domain. The spectrum is then shaped by applying a
band-dependent scaling to the gammatone filter out-
puts before re-summing them to form the enhanced
signal.

Note, an arbitrary spectral reshaping could be rep-
resented as 32 independent scaling factors in the log
domain. However, to ensure that the spectral shap-
ing is smooth over frequency we consider only spec-
tral shaping profiles that can be represented using
the first N terms of a discrete cosine series, i.e. for
32 bands. In this work N has been set to 4. Further,
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Figure 2: The Short-Term Objective Intelligibil-
ity (STOI) results for ORG, GP-OPT, DIS-OPT
and SS approaches at a range of SNRs.

c0 is arbitrarily fixed to 0 because it simply adds a
constant gain factor across frequency that does not
change the spectral shape.

After scaling the filterbank outputs, re-synthesis
is employed to generate the spectrally shaped speech
signal. Care needs to be taken when summing the
bands to compensate for band-dependent phase de-
lays introduced by the analysis. For details see
[9]. After re-synthesis the spectrally shaped signal
is scaled such that the global signal energy remains
unchanged before and after spectral manipulation.
The result enhanced signal will be transmitted into
the noisy environment.

Some processing artifacts might be introduced
by the analysis-resynthesis pathway [9]. In order
to control for these, the original unshaped stim-
uli (ORG), was also passed through the analysis-
resynthesis pathway but without any intervening
spectral shaping. This allowed us to isolate the in-
telligibility improvement due solely to spectral shap-
ing.

For comparative purposes, listeners also heard a
stimuli processed using the fixed SSF (SS). The
fixed filter implementation followed that of Zorila
et al. [24].

4. EXPERIMENTAL RESULTS

Figure 1 shows the actual recognition rates together
with standard errors averaged across listeners for the
four algorithms as a function of SNR. The reported
scores were computed as the average of percentage
of correctly identified letters and digits. From this
data, it is apparent that the performance of GP-OPT
and SS is doing similarly well across SNRs.

A two-way repeated measures ANOVA with two
within-subjects factors (SNR level and algorithm



Table 1: The p-values for comparing intelligibil-
ity rates between techniques across SNRs levels.

ORG GP-OPT DIS-OPT SS
ORG - 0.024 0.008 0.020

GP-OPT 0.024 - 0.060 0.015
DIS-OPT 0.008 0.060 - 0.015

SS 0.020 0.015 0.0156 -

type) revealed that a gradual positive impact of SNR
level (F(4,12) = 48.67, p < 0.05), and a small but
rather significant effect of algorithm type (F(3,12)
= 16.58, p < 0.05). Our primary purpose is to un-
derstand if there is an interaction between these two
factors on the overall intelligibility. There was a
significant difference between the ORG and the re-
maining entries. When comparing the performance
of ORG against both GP-OPT and SS, for instance,
it can be seen that the overall intelligibility rate for
higher and lower SNRs levels was a nearly equiva-
lent compared to the ORG with a difference equiv-
alent to about 10 % of performance. However, the
performance of DIS-OPT is comparable to the ORG
across SNRs except at −3 dB.

A further statistical analysis was carried out using
a pairwise comparison analysis. Mean intelligibili-
ties are 54.7 %, 67.0 %, 43.5 % and 71.7 % for ORG,
GP-OPT, DIS-OPT and SS across SNRs levels, re-
spectively. A major difference can be seen between
GP-OPT and DIS-OPT with difference in mean of
23.5 % and between SS and DIS-OPT of 28.23 %.
The p-values can be found in Table 1.

It is interesting to test whether these listening tests
results could have been correctly predicted by recent
objective measures of intelligibility. Figure 2 shows
the results of the Short-Term Objective Intelligibil-
ity (STOI) at a range of SNRs. The STOI [20] is
a perceptual distortion measure which is designed to
evaluate the clean and degraded processed speech. It
has been shown a high correlation with speech intel-
ligibility [20]. It can be seen that the STOI measures
shown in Figure 2 have a high level of agreement
with the actual listening results. STOI correctly pre-
dicts that both the SS and GP-OPT techniques will
improve intelligibility. However. it predicts an im-
provement equivalent to a roughly 3 dB increase
in SNR, which is a slight underestimate of the im-
provement observed in the listening data. Further,
it predicts the DIS-OPT to have roughly the same
intelligibility as the original noisy signal, failing to
predict that DIS-OPT will actually decrease intelli-
gibility at -6 and -3 dB SNRs.

5. CONCLUSION AND DISCUSSIONS

In this paper, we have evaluated a number of differ-
ent SSF systems, all of which aim to increase the in-
telligibility of the keywords of a target utterance in
the presence of speech-shaped noise. In particular,
we compare the performance of both fixed and adap-
tive SSFs and see whether using a priori knowledge
of sound sources in the mixture and/or pre-trained
speech models results in a larger intelligibility gain.

Our analysis shows that the adaptive SSF using a
simple measure of energetic masking is able to im-
prove speaker intelligibility in listening task and ob-
tained a significant improvement over the baseline
performance across all SNR conditions. However,
the adaptive SSF using a more complicated measure
of intelligibility based on a statistical speech model
failed to improve intelligibility. The most striking
result to emerge is that, in contrast to results reported
elsewhere [6], in our experiments the adaptive SSF
performed no better than the fixed SSF.

The DIS-OPT system is primarily based on a
measure of decoding using the DI model. The DI
accounts for the entire target utterance, and is not
specific to parts of the utterance to be enhanced al-
though the motivation behind this measure was to
discriminate between the correct class with the class
that is most acoustically similar (e.g. ‘m’ versus ‘n’
or ‘b’ versus ‘v’). The nature of listening task, how-
ever, was to identify the letters and digits in the spo-
ken utterance in noise. Hence, the development of
the system and the listening task might be not com-
patible and that might explain the poor performance
of the enhancer despite the extra-embedded knowl-
edge.

For the adaptive SSF to operate well in non-
stationary noise conditions, one could extend the al-
gorithm by adding a time-varying modification. Ad-
ditionally, one could replace the spectral modifica-
tion used in this work with different motivated spec-
tral manipulation e.g. modulation filtering.
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