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ABSTRACT 

 

Studying tongue motion during speech using 

ultrasound is a standard procedure, however 

automatic ultrasound image labelling remains a 

challenge, as standard tongue shape extraction 

methods typically require human intervention. This 

article presents a method based on deep neural 

networks to automatically extract tongue contours 

from speech ultrasound images. We use a deep 

autoencoder trained to learn the relationship between 

an image and its related contour, so that the model is 

able to automatically reconstruct contours from the 

ultrasound image alone. We use an automatic 

labelling algorithm instead of time-consuming hand-

labelling during the training process. We afterwards 

estimate the performances of both automatic labelling 

and contour extraction as compared to hand-labelling. 

Observed results show quality scores comparable to 

the state of the art. 

 

Keywords: Tongue shape, Medical imaging, 

Machine learning, Ultrasound 

1. INTRODUCTION 

Although ultrasound (US) provides a non-invasive 

and easy to implement tongue imaging method, the 

presence of multiplicative (Rayleigh) noise makes 

contour extraction with standard image processing 

techniques a challenge. Currently, most tongue 

contour extraction algorithms augment raw image 

data with a priori knowledge based on the physics of 

tongue movement. Simple examples require that 

contours found in a given frame be spatially “smooth” 

or forbid abrupt changes in contour shape between 

consecutive frames. 

In [1], it has been shown that a deep neural 

network architecture is able to learn the contour 

extraction task when trained on hand-labelled 

contours. In this case, the smoothness criterion arises 

naturally because hand labelling is guided by a priori 

knowledge of the class of forms that a human tongue 

can assume. Hand labelling, however, is time 

consuming, and, furthermore, does not provide an 

obvious means of including the second constraint, 

i.e., that contours extracted from frames nearby in 

time must be “similar”. 

In this article, we repeat the procedure of [1], but 

replace hand-labelled training data with contours 

extracted by an automatic algorithm that uses block-

matching to enforce a crude frame-to-frame similarity 

condition. This approach allows training data to be 

obtained in a rapid and relatively painless way, and 

provides a means of testing whether the deep neural 

network architecture, which processes only one 

image at a time, is able nonetheless to embed a priori 

knowledge corresponding to this additional 

constraint. 

 

2. METHODS 

2.1. Deep Neural Networks and autoencoders 

2.1.1. Restricted Boltzmann Machines 

 

The model of Deep Neural Networks proposed in [2] 

is based on the stacking of Restricted Boltzmann 

Machines (RBMs). A Restricted Boltzmann Machine 

is a neural network composed of a layer with visible 

units and a layer with hidden units, connected through 

directional links (weights), which are symmetric. The 

probability of activation of a hidden unit depends on 

the weighted activations of the units in the visible 

layer (and vice-versa, since the connections are 

symmetric). 

2.1.2. Deep architectures 

Training a deep neural network uses a supervised 

learning strategy based on the stacking of RBMs 

trained layer per layer from bottom to top. Using deep 

networks has several advantages. First of all, deep 

learning (DL) algorithms provide data-driven feature 

extraction in which the output of each layer gives a 

representation of input data. Moreover, DL is able to 

deal with large sets of data. Deep neural networks 

often give very good results, which explains why they 



are currently popular in many signal processing 

applications [3]. 

2.2. Training strategy 

2.2.1. Learning the relationship between US and 

contour 

Our method is divided into two phases. In the first 

phase, the network, acting as an autoencoder, is 

trained to reproduce its input vector. This vector is the 

concatenation of an ultrasound image and a binary 

image that represents the contour of the tongue, both 

reduced to 33 x 30 pixels, resulting in 1980 

components, plus one constant input (bias). In the 

second phase, the network is asked to learn to 

reconstruct the tongue contour from the ultrasound 

image only. If we use a network trained on both 

contour and ultrasound image inputs, it is not obvious 

that the network will be able to produce a contour 

image if it lacks one of the inputs. The method 

described in [1] proposes to estimate the contours 

using ultrasound images only, under the hypothesis 

that the representation learned by a network trained 

on the two kinds of images embeds the relationship 

between these two kinds of data. The architecture 

used is called an autoencoder (see [4] [5] [6] and [7] 

for details). This type of network is trained to find an 

internal representation (code) of the input data so that 

it can be precisely reconstructed from this internal 

representation only. 

In our case, if we are able to build an encoder that 

can generate a hidden coding like the one produced 

by the combination of ultrasound and contour images, 

but using ultrasound data only, then the decoder 

should be able to decode hidden information to 

reconstruct both ultrasound and contour data. This 

encoder is obtained in a “translational” manner [1] 

from the original encoder: the first RBM is replaced 

by what is called a translational RBM (tRBM, see 

Figure 1).  

 

 
Figure 1: The two phases of learning. In the first step, the 

network learns the relationship between US images and 

contour. In the second phase, it is able to use this 

relationship to reconstruct the contour. 

In the second phase, we learn only the parameters 

of the first layer, the others remaining unchanged. In 

other words, tRBM is trained to produce the same 

hidden features as the features extracted from the 

original RBM but without contour inputs. Then, if we 

use the original autoencoder but replace the first 

RBM by the tRBM, we can reconstruct a contour 

image that matches the tongue shape for each reduced 

ultrasound image of the test database. 

2.2.2. Initial labeling 

For both training and test, we used data from 

recording sessions described in [8]. We use in our 

training database an initial contour automatically 

extracted with an image processing algorithm  

developed in the Max/MSP software environment 

that outputs a tongue surface for each ultrasound 

image. Each ultrasound image is first pre-processed 

in order to select a region of interest of the relevant 

portion. On these images, the contour detection is 

done columnwise, from left to right. For each column, 

from top to bottom, every white pixel followed by a 

black pixel is considered a candidate contour point. 

This implies that several pixels can be selected as 

candidates. Since only one pixel per column is 

retained, a decision is made as to which candidate 

indeed belongs to the contour. This is done by 

comparing the current image to the previous one, the 

idea being that if a pixel was part of the previous 

contour, it or one of its neighbours must belong to the 

next one. If however no point from the previous 

contour matches one of the candidates, the selection 

is based on the neighbouring columns. Using this 

procedure, we pick up a set of (𝑥, 𝑦) coordinates 

corresponding to the tongue surface contour in each 

image. These coordinates are then used as the ground 

truth (referred to as Ref) for the training set of the 

autoencoder. 

3. CHOICE OF NETWORK ARCHITECTURE 

Each example from the training dataset is presented 

to the network as an array containing the normalized 

intensities of the two binary images (1980 pixels + 1 

bias). Several hyperparameter sets of the structure 

were explored (defined in sections 3.1-3.4): the 

number of layers, the number of unit per layer, the 

number of epochs for training and the size of “mini-

batches”, which are subsets of training data, usually 

of 10 to 100 examples. Our choice of parameters was 

based on the validation error (root mean squared 

difference between input and reconstruction) on a 

17,000 example dataset (15,000 examples for training 

and 2,000 for validation). 



3.1. Deep architectures 

Stacking RBMs increases the level of abstraction of 

the model. However, we must determine the 

appropriate depth. For this purpose, we tried several 

architectures with various depths. In our experiments, 

we fixed 1,000 units per layer, 50 epochs and mini-

batches of size 1,000 and tested the performances for 

a structure with 2, 3 and 4 hidden layers. The lowest 

validation error was achieved while using 3 hidden 

layers (see table 1). 

 

Table 1: Influence of the number of layers on the 

validation error.  

Number of hidden 

layers 

Validation error 

2 0.39 

3 0.38 

4 0.44 

3.2. Network complexity 

In classical machine learning models, we should use 

more training cases than parameters to avoid 

overfitting [9]. However, it is common to have a large 

number of hidden units in deep architectures. For our 

application, we based our choice of hidden units on 

the performances of several configurations allowing 

reasonable computing time, shown in table 2. 

 

Table 2: Influence of the number of hidden units on 

the validation error for the 3 layer model.  

Number of hidden units 

per layer 

Validation error 

500 0.41 

1000 0.38 

2000 0.37 

3.3. Use of mini-batches 

The use of mini-batches speeds up the algorithm 

because a weighted update occurs for each mini-batch 

instead of each example. However, finding an ideal 

mini-batch size is not straightforward. According to 

[9], the training set should be divided into mini-

batches of 10 to 100 examples. We decided to test 

tongue contour reconstruction using several mini-

batch sizes: 10, 50 and 100 examples per mini-batch. 

 

Table 3: influence of mini-batch size on the 

validation error.  

Mini-batch size Validation error 

10 0.65 

50 0.53 

100 0.38 

200 0.40 

 

Results showed that for a 3 layer network with 1,000 

units per layer, 50 epochs and mini-batches of size 10, 

the error reached 0.65, while it decreased to 0.38 with 

mini-batches of size 100 and increases above. 
 

3.4 Number of epochs 

 

We used a similar procedure for testing the number of 

epochs necessary for weight updates. Keeping a 

reasonable number of epochs is crucial for 

computation time, and the time vs. performance 

balance should be considered. We used a 3 hidden 

layer network with 1,000 hidden units per layer, using 

mini-batches of size 100, and tested 5, 50 and 250 

epoch runs. Using too many epochs degrades the 

performances. Furthermore, the number of epochs is 

one of the main bottlenecks for computation time. 

 

Table 4: Influence of the number of training epochs 

on the training error.  

Number of epochs Validation error 

5 0.41 

50 0.38 

250 0.40 

4. RESULTS 

4.1. Evaluation criteria 

During the training stage, we used an autoencoder 

made of a 3-layer encoder associated with a 

symmetric decoder, with 2,000 hidden units, mini-

batches of size 100 and 50 epochs. The evaluation of 

the quality of tongue shape reconstruction requires 

definite criteria and comparison to a reference. 

Generally speaking, a proper tongue shape is a curve 

that follows in a realistic manner the lower edge of 

the bright line appearing on an ultrasound image. It is 

important to extract the entire visible surface 

appearing in the ultrasound image, without adding 

artifacts [10]. In order to evaluate the quality of 

tongue shapes obtained with the DL method, we 

trained the network on a 17,000 example database and 

randomly selected another 50 ultrasound images from 

the same recording session and same speaker to test 

the tongue contour extraction. We first compared the 

contour coordinates obtained with DL to those 

obtained with manual labelling. However, the set of 

tongue contour coordinates does not always have the 

same number of points (see figure 2), so that 

comparison between coordinates is not 

straightforward. In [11], a measure is proposed to 

compare each pixel of a given curve to the nearest 

pixel (in terms of 𝐿1 distance) on the curve it is 

compared to. This measure, named Mean Sum of 



Distances (MSD) (see eq. (1)), provides an evaluation 

in pixels of the mean distance from a contour 𝑈 to a 

contour 𝑉, even if these curves do not share the same 

coordinates on the 𝑥 axis or do not have the same 

number of points. Contours are defined as a set of 

(𝑥, 𝑦) coordinates: 𝑈 is a set of 2D points (𝑢1, … , 𝑢𝑛) 

and 𝑉 is a set of 2D points (𝑣1, … , 𝑣𝑚). MSD is 

defined as followed: 
 

𝑀𝑆𝐷(𝑈, 𝑉) =  
1

𝑚+𝑛
(∑ min

𝑗
|𝑣𝑖 − 𝑢𝑗|𝑚

𝑖=1 +

∑ min
𝑗

|𝑢𝑖 − 𝑣𝑗|𝑛
𝑖=1 ). 

(1) 

 

 
Figure 2: Comparing two tongue contours using MSD 

allows a comparison between two shapes even if some 

points are missing. 

4.2. Experiments 

Some example contours found using DL are shown in 

Figure 3. It now remains to compare the various 

methods used and evaluate the results. In addition to 

the comparison of the coordinates from DL to manual 

labelling (Hand), of course, we also want to compare 

automatically labelled ground truth (Ref) computed 

in sec. 2.2.2, to manual labelling in order to complete 

our analysis. Results appear in Table 5. 

 

    
Figure 3: Examples of extracted contours for different 

tongue shapes. 

 

The results show that the contours obtained using 

DL, Ref, and Hand labelling are of rather similar 

quality. This implies that the DL autoencoder, despite 

being shown only one image at a time, was able to 

achieve results comparable to an algorithm, Ref, that 

has access to the preceding image in the sequence. 

This suggests that the DL architecture has embedded 

a priori structural information stemming from the 

similarity constraint imposed in the Ref algorithm. 

This is an interesting result that may open the way to 

incorporating additional structural cues, for example 

from a physical 3D tongue model. 

We also wished to compare these MSD values to 

those reported in the literature. In [11], the labelling 

from EdgeTrak, which uses Snake method (see [12] 

and [13]), is compared to two manual inputs from two 

different experts. To compare MSD values in pixels 

for different resolutions, we converted these values 

into millimetres using image resolution. Image size 

was 112.9 x 89.67 mm. The comparison between an 

expert 1 and an expert 2 gives a MSD of 0.85 mm (2.9 

pixels with the conversion 1 px = 0.295 mm), the 

comparison between expert 1 and EdgeTrak gives a 

MSD of 0.67 mm, while the comparison between 

expert 2 and EdgeTrak gives an MSD of 0.86 mm. In 

[1], after 5 cross-validations, the average MSD 

computed on 8640 images is 0.73 mm. Our MSD 

values, computed with the equivalence 1 px = 0.35 

mm, are quite similar to these, which allows us to 

conclude that the results obtained using DL trained 

with an automatic algorithm are of good quality. 

 
Table 5: Average values of MSD for the comparison 

between Hand and Ref; Hand and DL; and Ref and DL. 

 Average MSD (mm) 

Hand vs. Ref 0.9 

Hand vs. DL 1.0 

Ref vs. DL 0.8 

5. DISCUSSION 

The use of a deep autoencoder to automatically 

extract the contour of the tongue from an ultrasound 

picture appears to give promising results. The results 

also show the interest of using automatically 

extracted contours as ground truth instead of 

manually labelling large amount of data, which is 

time consuming. Moreover, since our technique 

provides performances similar to those of an 

algorithm that uses temporal information, we can 

consider that our network was able to learn a new 

constraint based on its inputs, even if it does not use 

temporal prior knowledge. The choice of our network 

structure was adjusted and validated by several 

performance tests. In the future, providing the 

algorithm with a variety of learning databases, 

composed of sentences, words or phonemes 

pronounced by several speakers and in various 

modalities (e.g., speech or singing) would be a way to 

testing the sensitivity of the algorithm to variations in 

experimental conditions. 
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