
Child Phonology Analyzer: processing and analyzing transcribed speech

Chen Gafni

Bar-Ilan University
chen.gafni@gmail.com

ABSTRACT

This paper describes two algorithms for analyzing

transcribed speech corpora: (1) identification of

phonological processes, and (2) phonological queries.

The algorithms are implemented in Visual Basic for

Applications for Microsoft Excel, thus exploiting

Excel’s mass‐calculation capabilities to analyze large

corpora quickly. The user interface features a set of

editable tables that contain definitions of

phonological entities. This inclusion provides great

flexibility, and allows users to maintain their own

working conventions.

Keywords: corpus analysis, phonological processes,

language acquisition, phonetic alignment, similarity

1. INTRODUCTION

Automatic analysis of speech corpora is an

essential part of the study of complex phenomena,

such as phonological development. The introduction

of systems such as Phon ([6], [7]) has contributed

greatly to our ability to detect developmental patterns

in child speech. In this paper, I present a new system

for analyzing transcribed speech corpora. The

algorithms described here include automatic

identification of phonological processes, and

phonological queries. They are combined with a user-

friendly interface in a Microsoft Excel workbook.

This implementation allows the exploitation of

Excel’s built‐in mass‐calculation capabilities to

analyze large corpora quickly. Among other things,

the algorithms benefit from the single-step

application of formulas to large data sets, and the use

of filters to reduce the size of data sets to be analyzed.

The user interface features several editable tables

that constitute the phonological knowledge base

required by the algorithms. Incorporating these tables

in the user interface allows users to maintain their

own working conventions, such as the set of relevant

phonetic symbols and phonological features,

diacritical operations, and definitions of phonological

processes.

The algorithms operate on Excel workbooks that

contain pairs of (manually transcribed) target-output

tokens in adjacent columns (this arrangement can be

done by another procedure included in the system).

2. IDENTIFICATION OF PHONOLOGICAL

PROCESSES

The proposed algorithm attempts to mimic human

analysis of string similarity by dividing the process

into a stage of global pattern recognition followed by

analysis of local changes. Accordingly, for a given

pair of target and output tokens, detection of

phonological processes is based on two principles:

(1) maximal identity-mapping, and (2) minimized

weighted differences.

2.1. Maximal identity-mapping

This step involves finding the largest sub-string of

the output token that is contained in the target token.

Initially, Excel’s FIND function is applied to the

entire data range to identify all output tokens that are

faithful to their targets, up to (and including) deletions

at the edges (e.g., /kæt/ ‘cat’→ [kæ]). Changing the

argument order in the FIND function allows the

detection of insertions at word edges.

If the output string is not contained in the target

string (and vice versa), the algorithm splits the output

to two sub-strings, and iterates through them: in the

left branch it removes the rightmost character, and

searches the string in the target string from the

beginning. In the right branch, the leftmost character

is removed, and the search moves from the end of the

target string backwards. The iterations continue until

both branches are found in the target, or reduced to

zero length. Consider the following example of

palatal fronting: /ʃɪp/ ‘ship’ → [sɪp]. Since the output

string is not contained in the target string, the

algorithm examines the left output branch, sɪ, which

is also not contained in the target, and the right

branch, ɪp, which is aligned with the second segment

of the target string. A second derivation of the left

output branch, s, is also not found in the target, and

the mapping process ends with all target segments,

except for ʃ, being aligned with output segments, and

all output segments, except for s, being aligned with

target segments.

At the end of the mapping procedure, the

algorithm marks the aligned target segments as being

faithfully produced and goes on to analyze the

remaining segments.

It is important to note that this procedure can

occasionally bring to misidentification. Consider the

following case of metathesis in child’s Dutch: /kɪp/

‘chicken’ → [pɪk] ([2]). Although the mapping

algorithm detects the output consonants k and p in the

target, it would be misleading to mark them as being

faithfully produced. To detect such problematic

cases, the algorithm compares the mapping results of

the left and right output branches. In this case, the

right output branch k is aligned with the first target

segment, and the left output branch p is aligned with

the third target segment. In other words, the branches

are transposed, and the algorithm will not mark their

segments as being faithfully produced.

The mapping procedure described here is

somewhat different from other common approaches

to phonetic alignment, such as the dynamic algorithm

for calculating minimal edit distance (see [5] for a

review of other algorithms). The current proposal

starts by comparing maximal strings and works its

way down only if necessary. This approach is more

economical than calculating the minimal edit distance

table, since it does not consider a-priori irrelevant

solutions. Note, however, that this advantage holds as

long as the target and output resemble each other to a

reasonable degree. In addition, the current approach

dissociates the characterization of phonological

changes from the identification of global similarity.

By contrast, edit distance calculations work on

segment-size units, and are thus concerned with the

nature of phonological processes from the beginning.

Finally, the current proposal works on

unsyllabified tokens. This is because the presence of

prosodic markers may complicate the mapping (e.g.,

when the syllabic structure is altered due to

deletions/insertions). Therefore, at the beginning of

the procedure, all prosodic markers are removed, and

pasted back after the identification process is

completed. Other systems perform the detection on

syllabically-aligned target-output forms (see for

example, [3] and [4]).

2.2. Minimized weighted differences

After mapping is completed, the algorithm

examines the non-aligned segments in attempt to find

the best description for the target-output differences.

First, the sets of features of all non-aligned segment

are obtained from the system’s phonetic table. Then,

each non-aligned target segment is paired with each

non-aligned output segment and their relation is

examined in terms of differing features. In addition,

each target segment can be paired with an indel (null

segment) to simulate a case of deletion. Similarly,

each output segment can be paired with an indel to

simulate epenthesis.

To estimate the likelihood of each possible target-

output segment alternation, the algorithm calculates

the feature distance between the segments according

to the number of features that separate the segments.

A second likelihood quantity, position distance, is

calculated to reduce the chances of false pairing, e.g.,

mistaking an assimilated segment for its trigger (for

example, aligning the first output ɡ in /dɔɡ/ ‘dog’ →

[ɡɔɡ] with the target ɡ rather than with the target d).

To determine the position distance, we first calculate

the anchor, which is the extrapolated position of the

first output segment in the target. Consider the

Hebrew target-output pair /tapuaχ/ ‘apple’ → [buaχ].

The mapping procedure aligns the output sub-string

‘uaχ’ to position 4 in the target. The first aligned

output segment, u, is the second output segment, and

therefore the extrapolated position of the first

(unmapped) output segment in the target is 3 (indeed,

the first output segment b results from the voicing of

the third target segment p). The position distance

between unmapped output and target segments is

calculated with reference to the anchor. In the

example above, the position distance between the first

output segment b and the first target segment, t, is 2.

Therefore, the output b is more likely to be paired

with the target p (position distance 0) than with the

target t. The position distance between a segment and

an indel depends on the position of the indel. In the

above example, two indels are added at the beginning

of the output ([##buaχ]). Thus, the target p is at a

distance of 1 from the nearest indel, which makes

deletion a less likely description of the fate of p,

compared to voicing (alignment with output b).

After calculating the position and feature distances

between all target-output segment pairs, the algorithm

finds the minimal weighted differences over all legal

pair combinations to determine the most likely full

descriptions of target-output relations (legal

combinations are those that match all target segments,

such that two target segments cannot be paired

simultaneously with the same output segment).

The optimal description of target-output relations

may include some context-free substitutions. After

finding all the features that separate a target segment

St from an output segment So, the algorithm searches

the table of phonological processes of the analyzer for

a process that matches the situation. Substitutions are

defined in the table in terms of the output value of a

relevant feature, conditions that constrain the target

and the output segments, and additional

obligatory/optional changes. For example,

identification of gliding (e.g., /lʊk/ ‘look’ → [wʊk])

requires pairing a target liquid ([+LIQ]) with an output

glide ([C,-CONS]). Thus, the phonological processes

table contains the value ‘-CONS’ in the ‘Result’

column, and the value ‘+LIQ’ in the ‘Condition on

target’ column. However, in addition to a difference

in the value of the feature [CONS] the two segments

may also differ in other respects, such as place and

manner of articulation. These differences must be

indicated in the table to allow correct identification.

After identifying context-free substitutions, the

algorithm compares the output alignments of altered

target segments with other output segments to detect

possible cases of assimilation (comparisons are made

only with respect to altered target features).

The algorithm described here was tested on the

data of the Hebrew monolingual child RM that was

recorded as part of the Child Language Project at Tel-

Aviv University ([1]). The algorithm achieved high

accuracy rates in the detection of phonological

processes, and is capable of analyzing tens of

thousands of tokens in several minutes.

2.3. Diacritical operations

Diacritical marks are treated as operators,

changing feature values of their hosting segments.

When feature sets of target/output segments are

collected for the identification of phonological

processes, these sets are modified according to the

nature of present diacritics. Each operator is defined

in terms of the affected feature(s), the type of

operation, and its content. There are four types of

operators:

(i) Add: adds content to a given tier. For example,

the ejective symbol (e.g., kʼ) adds the glottis as a

second place of articulation of the hosting

segment (e.g., [VELAR-GLOTTAL]).

(ii) Change: changes the valence of a feature. For

example, the aspiration sign (e.g., tʰ) sets the

value of the [SG] tier to [+SG].

(iii) ChangeFlex: the effect of such operators

depends on the nature of the hosting segments.

For example, the dental sign (e.g., t̪) changes the

place of articulation of alveolars to [DENTAL],

and that of bilabials to [LABIODENTAL].

(iv) Combine: these operators characterize affricates

and doubly-articulated consonants. In the case of

affricates, it sets the manner of articulation of the

combined segment to [AFFRICATE], and keeps

only the value of the release portion of the

affricate in all the other tiers. For doubly-

articulated consonants, the combine operator

combines the places of articulation of both

segments into a single representation. In other

tiers it keeps only one value. For opposing binary

values, the ‘+’ value is kept. Thus, k͡p is

represented as [BILABIAL-VELAR] in the place

tier, as [+LAB] in the [LAB] tier, and as [+DOR] in

the [DOR] tier.

The system described in this paper contains an

editable table in which all diacritical marks are listed

and defined. A second table is dedicated to flexible

operators (i.e., defined by the ChangeFlex operation).

3. PHONOLOGICAL QUERIES

The query algorithm finds all tokens containing a

desired sequence of phonological entities. The

sequence can be any combination of segments and

feature complexes. For example, the query string

V[-SON,-CONT] is interpreted as any vowel followed

by a non-continuant obstruent.

3.1. Basic algorithm

The query algorithm has two main stages: the first

stage involves decoding of the query string and

preparing the corpus for the query. The query is

performed in the second stage.

3.1.1. Decoding and corpus conversion

The decoder part of the algorithm identifies the

requested phonological units in the query string by

searching sub-parts of the string in the phonological

database. Extraction of sub-parts is performed using

the function mid(x,n,m) which returns m characters of

the string x starting from character n. A feature

complex is detected by the occurrence of the feature

opening marker (e.g., ‘[‘). If such a marker is found,

the algorithm searches for the complex end marker

(e.g., ‘]‘). In addition, sub-parts of the complex are

identified by occurrences of the in-feature marker

(e.g., a comma) between feature complex boundaries.

Then, the algorithm can extract and identify the

features enclosed by the brackets with the assistance

of the phonetic table.

Following the decoding of the query string into

phonological units, the algorithm finds the values of

the desired features for each segment in the phonetic

table, and then creates representations for all the

tokens in the corpus in terms of those features. These

representations are written to the spreadsheet

alongside the original tokens. Thus, for the above

example, the algorithm creates three representations

of the corpus tokens in terms of CV units, and the

values of the [SON] and [CONT] features. These

representations are demonstrated for the token /dɔɡ/

‘dog’ in Table 1:

Token CV [SON] [CONT]

dɔɡ CVC [-S][+S][-S] [-C][+C][-C]

Table 1: Representations of /dɔɡ/ as sequences of

CV units, [SON] and [CONT] features ([S] and [C]

abbreviations are used for space considerations).

The query decoder also creates a scheme

according to which the query will be performed. The

scheme is a hierarchical organization of the query

string sub-units by their linear order. The scheme for

the example above is illustrated in Figure 1. It has two

levels corresponding to the two major units of the

query string, and the second level has two nodes

corresponding to the two features in the complex.

Figure 1: Query scheme for V[-SON,-CONT]

The meaning of this organization is that the algorithm

will return the intersection of all tokens containing a

sequence of a vowel and an obstruent, and the tokens

containing a sequence of a vowel and a non-

continuant segment

The scheme is also constrained by positional

specifications: the search can be limited to word

initial, word middle, or word final positions, and can

also be matched with whole tokens. To facilitate the

query, the algorithm uses the feature sequences

(Table 1) to filter the appropriate columns and

exclude irrelevant tokens.

3.1.2. Querying

The query is performed as follows: the algorithm

examines all the sequences in the first filtered column

(e.g., the CV column in Table 1) and extracts tokens

containing the first query section (e.g., V) in the

desired position.

Then, the algorithm examines the equivalent

sequences in the subsequent column(s) searching for

the second query section. In the above example, it

examines cells in the third and the fourth columns of

Table 1 for occurrences of [-SON] and [-CONT].

Searching from the second section onwards is

constrained by the requirement that each section is

continuous with the preceding one. To ensure

continuity, the algorithm calculates the lengths of the

examined strings in terms of characters as well as

phonological units. In columns of feature

decompositions, the length in phonological units up

to a certain position is the number of feature opening

markers (e.g., ‘[‘).

Consider, for example, a word-final query of

V[-SON,-CONT] and the token /dɔɡ/. First, V is found

in position 2 of the sequence CVC in column 2 of

Table 1. Then, the algorithm calculates a length of 2

CV units from the beginning of the sequence to the

position in question. Next, both sub-parts of section 2

(e.g., [-SON], and [-CONT]) are searched for in

columns 3 and 4. According to the results of the

previous iteration, section 2 is required to begin at the

third phonological unit whose position equals the

position of the third ‘[‘ marker. If the desired sub-

parts of section 2 are found in the appropriate

positions in the relevant tiers (which is the case for

the example in question), the algorithm will continue

to the next sections (if exist).

Finally, when reaching the last query section, the

algorithm checks its end position to determine

whether it satisfies the positional constraint of the

query (e.g., in mid-word queries the last section must

not be aligned with the end of the token). If all query

sections are found and satisfy the positional

constraint, the examined token will be recorded and

counted.

The query algorithm can detect multiple

occurrences of the query string within a single token.

For example, /ˈlɪli/ ‘lily’ contains two occurrences of

the sequence [+LAT][V,+HIGH]. When the first

section (e.g., [+LAT]) is found in some cell of the

corpus, the algorithm searches for other occurrences

of that section within the same string. Then, the

querying procedure described above is performed

separately for each of these instances. Separate

counters are maintained for the number of tokens

containing the query string, and the total occurrences

of the string in question. In the current example, if no

positional constraints are placed, then /ˈlɪli/ will

contribute one occurrence for the token counter, and

two occurrences for the string counter.

3.2. Diacritical operations

Diacritical marks also affect the querying process.

Before performing the query, the algorithm cleans all

feature tiers from the diacritical marks (which were

present in the original token list, and were left

untouched by the conversions of segments to feature

representations). However, in tiers relevant for

diacritical operations, the algorithm modifies the

representation of the hosting segments, according to

the nature of the operators.

After the corpus is converted to the appropriate

feature representations, the algorithm searches each

tier for the presence of relevant diacritical marks. If

such marks are found, the diacritical operations are

executed. Thus, for /ˈpit͡sa/ ‘pizza’ (Hebrew), the

place and manner tiers after diacritical operations will

be as in Table 2:

Place Manner

[BIL][V][ALV][V] [PLO][V][AFF][V]

Table 2: Representations of /ˈpit͡sa/ as sequences of

place and manner features (BIL = bilabial; ALV =

alveolar; PLO = plosive; AFF = affricate; V = vowel).

V
[-SON]

[-CONT]

4. ACKNOWLEDGEMENTS

I would like to thank the audience of the Israeli

Phonology Circle (2012, 2014) for their comments

and suggestions. I would especially like to thank the

following people: Outi Bat-El, Evan Cohen, Galit

Adam, Stav Klein, and Hadas Yeverechyahu. Finally,

I would like to thank Roni Gafni for inspiring this

project.

5. REFERENCES

[1] Bat-El, O. 2014. The Acquisition of Hebrew Phonology

and Morphology. Brill.

[2] Fikkert, P., Levelt, C. 2008. How Does Place Fall Into

Place? The Lexicon and Emergent Constraints in the

Developing Phonological Grammar. In: Avery, P.,

Dresher, B.E., Rice, K. (eds.), Contrast in phonology:

Perception and Acquisition. Berlin: Mouton, 231-268.

[3] Gedge, J., Hedlund, G., Rose, Y., Wareham, T. 2007.

Natural Language Process Detection: From

Conception to Implementation. Paper presented at the

17th Annual Newfoundland Electrical and Computer

Engineering Conference (NECEC), St. John’s NL.

[4] Hedlund, G.J., Maddocks, K., Rose, Y., Wareham, T.

2005. Natural language syllable alignment: From

conception to implementation. In: Proceedings of the

Fifteenth Annual Newfoundland Electrical and

Computer Engineering Conference.

[5] Kondrak, G. 2003. Phonetic alignment and similarity.

Computers and the Humanities, 37(3), 273-291.

[6] Rose, Y., MacWhinney, B., Byrne, R., Hedlund, G.,

Maddocks, K., O’Brien, P., Wareham, T. 2006.

Introducing Phon: A Software Solution for the Study

of Phonological Acquisition. In: Bamman, D.,

Magnitskaia, T., Zaller, C. (eds.), Proceedings of the

30th Annual Boston University Conference on

Language Development. Somerville, MA: Cascadilla

Press, 489-500.

[7] Rose, Y., MacWhinney, B. 2014. The PhonBank

Project: Data and Software-Assisted Methods for the

Study of Phonology and Phonological Development.

In: Durand, J., Gut, U., Kristoffersen, G. (eds.), The

Oxford Handbook of Corpus Phonology. Oxford:

Oxford University Press, 308-401.

