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ABSTRACT 

 

This paper describes two algorithms for analyzing 

transcribed speech corpora: (1) identification of 

phonological processes, and (2) phonological queries. 

The algorithms are implemented in Visual Basic for 

Applications for Microsoft Excel, thus exploiting 

Excel’s mass‐calculation capabilities to analyze large 

corpora quickly. The user interface features a set of 

editable tables that contain definitions of 

phonological entities. This inclusion provides great 

flexibility, and allows users to maintain their own 

working conventions. 
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1. INTRODUCTION 

Automatic analysis of speech corpora is an 

essential part of the study of complex phenomena, 

such as phonological development. The introduction 

of systems such as Phon ([6], [7]) has contributed 

greatly to our ability to detect developmental patterns 

in child speech. In this paper, I present a new system 

for analyzing transcribed speech corpora. The 

algorithms described here include automatic 

identification of phonological processes, and 

phonological queries. They are combined with a user-

friendly interface in a Microsoft Excel workbook. 

This implementation allows the exploitation of 

Excel’s built‐in mass‐calculation capabilities to 

analyze large corpora quickly. Among other things, 

the algorithms benefit from the single-step 

application of formulas to large data sets, and the use 

of filters to reduce the size of data sets to be analyzed. 

The user interface features several editable tables 

that constitute the phonological knowledge base 

required by the algorithms. Incorporating these tables 

in the user interface allows users to maintain their 

own working conventions, such as the set of relevant 

phonetic symbols and phonological features, 

diacritical operations, and definitions of phonological 

processes. 

The algorithms operate on Excel workbooks that 

contain pairs of (manually transcribed) target-output 

tokens in adjacent columns (this arrangement can be 

done by another procedure included in the system). 

2. IDENTIFICATION OF PHONOLOGICAL 

PROCESSES  

The proposed algorithm attempts to mimic human 

analysis of string similarity by dividing the process 

into a stage of global pattern recognition followed by 

analysis of local changes. Accordingly, for a given 

pair of target and output tokens, detection of 

phonological processes is based on two principles:  

(1) maximal identity-mapping, and (2) minimized 

weighted differences.  

2.1. Maximal identity-mapping 

This step involves finding the largest sub-string of 

the output token that is contained in the target token. 

Initially, Excel’s FIND function is applied to the 

entire data range to identify all output tokens that are 

faithful to their targets, up to (and including) deletions 

at the edges (e.g., /kæt/ ‘cat’→ [kæ]). Changing the 

argument order in the FIND function allows the 

detection of insertions at word edges. 

If the output string is not contained in the target 

string (and vice versa), the algorithm splits the output 

to two sub-strings, and iterates through them: in the 

left branch it removes the rightmost character, and 

searches the string in the target string from the 

beginning. In the right branch, the leftmost character 

is removed, and the search moves from the end of the 

target string backwards. The iterations continue until 

both branches are found in the target, or reduced to 

zero length. Consider the following example of 

palatal fronting: /ʃɪp/ ‘ship’ → [sɪp]. Since the output 

string is not contained in the target string, the 

algorithm examines the left output branch, sɪ, which 

is also not contained in the target, and the right 

branch, ɪp, which is aligned with the second segment 

of the target string. A second derivation of the left 

output branch, s, is also not found in the target, and 

the mapping process ends with all target segments, 

except for ʃ, being aligned with output segments, and 

all output segments, except for s, being aligned with 

target segments.  

At the end of the mapping procedure, the 

algorithm marks the aligned target segments as being 

faithfully produced and goes on to analyze the 

remaining segments.  



It is important to note that this procedure can 

occasionally bring to misidentification. Consider the 

following case of metathesis in child’s Dutch: /kɪp/ 

‘chicken’ → [pɪk] ([2]). Although the mapping 

algorithm detects the output consonants k and p in the 

target, it would be misleading to mark them as being 

faithfully produced. To detect such problematic 

cases, the algorithm compares the mapping results of 

the left and right output branches. In this case, the 

right output branch k is aligned with the first target 

segment, and the left output branch p is aligned with 

the third target segment. In other words, the branches 

are transposed, and the algorithm will not mark their 

segments as being faithfully produced. 

The mapping procedure described here is 

somewhat different from other common approaches 

to phonetic alignment, such as the dynamic algorithm 

for calculating minimal edit distance (see [5] for a 

review of other algorithms). The current proposal 

starts by comparing maximal strings and works its 

way down only if necessary. This approach is more 

economical than calculating the minimal edit distance 

table, since it does not consider a-priori irrelevant 

solutions. Note, however, that this advantage holds as 

long as the target and output resemble each other to a 

reasonable degree. In addition, the current approach 

dissociates the characterization of phonological 

changes from the identification of global similarity. 

By contrast, edit distance calculations work on 

segment-size units, and are thus concerned with the 

nature of phonological processes from the beginning. 

Finally, the current proposal works on 

unsyllabified tokens. This is because the presence of 

prosodic markers may complicate the mapping (e.g., 

when the syllabic structure is altered due to 

deletions/insertions). Therefore, at the beginning of 

the procedure, all prosodic markers are removed, and 

pasted back after the identification process is 

completed. Other systems perform the detection on 

syllabically-aligned target-output forms (see for 

example, [3] and [4]). 

2.2. Minimized weighted differences 

After mapping is completed, the algorithm 

examines the non-aligned segments in attempt to find 

the best description for the target-output differences. 

First, the sets of features of all non-aligned segment 

are obtained from the system’s phonetic table. Then, 

each non-aligned target segment is paired with each 

non-aligned output segment and their relation is 

examined in terms of differing features. In addition, 

each target segment can be paired with an indel (null 

segment) to simulate a case of deletion. Similarly, 

each   output segment can be paired with an indel to 

simulate epenthesis.  

To estimate the likelihood of each possible target-

output segment alternation, the algorithm calculates 

the feature distance between the segments according 

to the number of features that separate the segments.  

A second likelihood quantity, position distance, is 

calculated to reduce the chances of false pairing, e.g., 

mistaking an assimilated segment for its trigger (for 

example, aligning the first output ɡ in /dɔɡ/ ‘dog’ → 

[ɡɔɡ] with the target ɡ rather than with the target d). 

To determine the position distance, we first calculate 

the anchor, which is the extrapolated position of the 

first output segment in the target.  Consider the 

Hebrew target-output pair /tapuaχ/ ‘apple’ → [buaχ]. 

The mapping procedure aligns the output sub-string 

‘uaχ’ to position 4 in the target. The first aligned 

output segment, u, is the second output segment, and 

therefore the extrapolated position of the first 

(unmapped) output segment in the target is 3 (indeed, 

the first output segment b results from the voicing of 

the third target segment p). The position distance 

between unmapped output and target segments is 

calculated with reference to the anchor. In the 

example above, the position distance between the first 

output segment b and the first target segment, t, is 2. 

Therefore, the output b is more likely to be paired 

with the target p (position distance 0) than with the 

target t. The position distance between a segment and 

an indel depends on the position of the indel. In the 

above example, two indels are added at the beginning 

of the output ([##buaχ]). Thus, the target p is at a 

distance of 1 from the nearest indel, which makes 

deletion a less likely description of the fate of p, 

compared to voicing (alignment with output b). 

After calculating the position and feature distances 

between all target-output segment pairs, the algorithm 

finds the minimal weighted differences over all legal 

pair combinations to determine the most likely full 

descriptions of target-output relations (legal 

combinations are those that match all target segments, 

such that two target segments cannot be paired 

simultaneously with the same output segment). 

The optimal description of target-output relations 

may include some context-free substitutions. After 

finding all the features that separate a target segment 

St from an output segment So, the algorithm searches 

the table of phonological processes of the analyzer for 

a process that matches the situation. Substitutions are 

defined in the table in terms of the output value of a 

relevant feature, conditions that constrain the target 

and the output segments, and additional 

obligatory/optional changes. For example, 

identification of gliding (e.g., /lʊk/ ‘look’ → [wʊk]) 

requires pairing a target liquid ([+LIQ]) with an output 

glide ([C,-CONS]). Thus, the phonological processes 

table contains the value ‘-CONS’ in the ‘Result’ 

column, and the value ‘+LIQ’ in the ‘Condition on 



target’ column. However, in addition to a difference 

in the value of the feature [CONS] the two segments 

may also differ in other respects, such as place and 

manner of articulation. These differences must be 

indicated in the table to allow correct identification.  

After identifying context-free substitutions, the 

algorithm compares the output alignments of altered 

target segments with other output segments to detect 

possible cases of assimilation (comparisons are made 

only with respect to altered target features). 

The algorithm described here was tested on the 

data of the Hebrew monolingual child RM that was 

recorded as part of the Child Language Project at Tel-

Aviv University ([1]). The algorithm achieved high 

accuracy rates in the detection of phonological 

processes, and is capable of analyzing tens of 

thousands of tokens in several minutes. 

2.3. Diacritical operations 

Diacritical marks are treated as operators, 

changing feature values of their hosting segments. 

When feature sets of target/output segments are 

collected for the identification of phonological 

processes, these sets are modified according to the 

nature of present diacritics. Each operator is defined 

in terms of the affected feature(s), the type of 

operation, and its content. There are four types of 

operators:  

(i) Add: adds content to a given tier. For example, 

the ejective symbol (e.g., kʼ) adds the glottis as a 

second place of articulation of the hosting 

segment (e.g., [VELAR-GLOTTAL]). 

(ii) Change: changes the valence of a feature. For 

example, the aspiration sign (e.g., tʰ) sets the 

value of the [SG] tier to [+SG].  

(iii) ChangeFlex: the effect of such operators 

depends on the nature of the hosting segments. 

For example, the dental sign (e.g., t̪) changes the 

place of articulation of alveolars to [DENTAL], 

and that of bilabials to [LABIODENTAL]. 

(iv) Combine: these operators characterize affricates 

and doubly-articulated consonants. In the case of 

affricates, it sets the manner of articulation of the 

combined segment to [AFFRICATE], and keeps 

only the value of the release portion of the 

affricate in all the other tiers. For doubly-

articulated consonants, the combine operator 

combines the places of articulation of both 

segments into a single representation. In other 

tiers it keeps only one value. For opposing binary 

values, the ‘+’ value is kept. Thus, k͡p is 

represented as [BILABIAL-VELAR] in the place 

tier, as [+LAB] in the [LAB] tier, and as [+DOR] in 

the [DOR] tier. 

 

The system described in this paper contains an 

editable table in which all diacritical marks are listed 

and defined. A second table is dedicated to flexible 

operators (i.e., defined by the ChangeFlex operation). 

3. PHONOLOGICAL QUERIES 

The query algorithm finds all tokens containing a 

desired sequence of phonological entities. The 

sequence can be any combination of segments and 

feature complexes. For example, the query string  

V[-SON,-CONT] is interpreted as any vowel followed 

by a non-continuant obstruent.  

3.1. Basic algorithm 

The query algorithm has two main stages: the first 

stage involves decoding of the query string and 

preparing the corpus for the query. The query is 

performed in the second stage. 

3.1.1. Decoding and corpus conversion 

The decoder part of the algorithm identifies the 

requested phonological units in the query string by 

searching sub-parts of the string in the phonological 

database. Extraction of sub-parts is performed using 

the function mid(x,n,m) which returns m characters of 

the string x starting from character n. A feature 

complex is detected by the occurrence of the feature 

opening marker (e.g., ‘[‘). If such a marker is found, 

the algorithm searches for the complex end marker 

(e.g., ‘]‘). In addition, sub-parts of the complex are 

identified by occurrences of the in-feature marker 

(e.g., a comma) between feature complex boundaries. 

Then, the algorithm can extract and identify the 

features enclosed by the brackets with the assistance 

of the phonetic table.  

Following the decoding of the query string into 

phonological units, the algorithm finds the values of 

the desired features for each segment in the phonetic 

table, and then creates representations for all the 

tokens in the corpus in terms of those features. These 

representations are written to the spreadsheet 

alongside the original tokens. Thus, for the above 

example, the algorithm creates three representations 

of the corpus tokens in terms of CV units, and the 

values of the [SON] and [CONT] features. These 

representations are demonstrated for the token /dɔɡ/ 

‘dog’ in Table 1: 

 

Token CV [SON] [CONT] 

dɔɡ CVC [-S][+S][-S] [-C][+C][-C] 
 

Table 1: Representations of /dɔɡ/ as sequences of 

CV units, [SON] and [CONT] features ([S] and [C] 

abbreviations are used for space considerations). 



The query decoder also creates a scheme 

according to which the query will be performed. The 

scheme is a hierarchical organization of the query 

string sub-units by their linear order. The scheme for 

the example above is illustrated in Figure 1. It has two 

levels corresponding to the two major units of the 

query string, and the second level has two nodes 

corresponding to the two features in the complex. 

 

Figure 1: Query scheme for V[-SON,-CONT] 

 
The meaning of this organization is that the algorithm 

will return the intersection of all tokens containing a 

sequence of a vowel and an obstruent, and the tokens 

containing a sequence of a vowel and a non-

continuant segment 

The scheme is also constrained by positional 

specifications: the search can be limited to word 

initial, word middle, or word final positions, and can 

also be matched with whole tokens. To facilitate the 

query, the algorithm uses the feature sequences 

(Table 1) to filter the appropriate columns and 

exclude irrelevant tokens.  

3.1.2. Querying 

The query is performed as follows: the algorithm 

examines all the sequences in the first filtered column 

(e.g., the CV column in Table 1) and extracts tokens 

containing the first query section (e.g., V) in the 

desired position. 

Then, the algorithm examines the equivalent 

sequences in the subsequent column(s) searching for 

the second query section. In the above example, it 

examines cells in the third and the fourth columns of 

Table 1 for occurrences of [-SON] and [-CONT]. 

Searching from the second section onwards is 

constrained by the requirement that each section is 

continuous with the preceding one. To ensure 

continuity, the algorithm calculates the lengths of the 

examined strings in terms of characters as well as 

phonological units. In columns of feature 

decompositions, the length in phonological units up 

to a certain position is the number of feature opening 

markers (e.g., ‘[‘).  

Consider, for example, a word-final query of 

V[-SON,-CONT] and the token /dɔɡ/. First, V is found 

in position 2 of the sequence CVC in column 2 of 

Table 1. Then, the algorithm calculates a length of 2 

CV units from the beginning of the sequence to the 

position in question. Next, both sub-parts of section 2 

(e.g., [-SON], and [-CONT]) are searched for in 

columns 3 and 4. According to the results of the 

previous iteration, section 2 is required to begin at the 

third phonological unit whose position equals the 

position of the third ‘[‘ marker. If the desired sub-

parts of section 2 are found in the appropriate 

positions in the relevant tiers (which is the case for 

the example in question), the algorithm will continue 

to the next sections (if exist).  

Finally, when reaching the last query section, the 

algorithm checks its end position to determine 

whether it satisfies the positional constraint of the 

query (e.g., in mid-word queries the last section must 

not be aligned with the end of the token).  If all query 

sections are found and satisfy the positional 

constraint, the examined token will be recorded and 

counted. 

The query algorithm can detect multiple 

occurrences of the query string within a single token. 

For example, /ˈlɪli/ ‘lily’ contains two occurrences of 

the sequence [+LAT][V,+HIGH]. When the first 

section (e.g., [+LAT]) is found in some cell of the 

corpus, the algorithm searches for other occurrences 

of that section within the same string. Then, the 

querying procedure described above is performed 

separately for each of these instances. Separate 

counters are maintained for the number of tokens 

containing the query string, and the total occurrences 

of the string in question. In the current example, if no 

positional constraints are placed, then /ˈlɪli/ will 

contribute one occurrence for the token counter, and 

two occurrences for the string counter. 

3.2. Diacritical operations 

Diacritical marks also affect the querying process. 

Before performing the query, the algorithm cleans all 

feature tiers from the diacritical marks (which were 

present in the original token list, and were left 

untouched by the conversions of segments to feature 

representations). However, in tiers relevant for 

diacritical operations, the algorithm modifies the 

representation of the hosting segments, according to 

the nature of the operators.  

After the corpus is converted to the appropriate 

feature representations, the algorithm searches each 

tier for the presence of relevant diacritical marks. If 

such marks are found, the diacritical operations are 

executed. Thus, for /ˈpit͡sa/ ‘pizza’ (Hebrew), the 

place and manner tiers after diacritical operations will 

be as in Table 2: 

 

Place Manner 

[BIL][V][ALV][V] [PLO][V][AFF][V] 
 

Table 2: Representations of /ˈpit͡sa/ as sequences of 

place and manner features (BIL = bilabial; ALV = 

alveolar; PLO = plosive; AFF = affricate; V = vowel). 

V
[-SON]

[-CONT]
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