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ABSTRACT

Laryngectomee patients lose their ability to produce
speech sounds and suffer in their daily communication.
There are currently limited communication options for
these patients. Silent speech interfaces (SSIs), which rec-
ognize speech from articulatory information (i.e., with-
out using audio information), have potential to assist
the oral communication of persons with laryngectomy or
other speech or voice disorders. One of the challeng-
ing problems in SSI development is to accurately recog-
nize speech from articulatory data. Deep neural network
(DNN)-hidden Markov model (HMM) has recently been
successfully used in (acoustic) speech recognition, which
shows significant improvements over the long-standing
approach Gaussian mixture model (GMM)-HMM. DNN-
HMM, however, has rarely been used in silent speech
recognition. This paper investigated the use of DNN-
HMM in recognizing speech from articulatory movement
data. The articulatory data in the MOCHA-TIMIT data
set was used in the experiment. Results indicated the
performance improvement of DNN-HMM over GMM-
HMM in silent speech recognition.
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1. INTRODUCTION

People with impaired speech rely on assistive devices for
their daily communication. For example, persons after
laryngectomy (a surgical removal of larynx due to the
treatment of cancer) or with neurological speech disor-
ders lose their ability to speak and suffer in their daily
communication [2]. Although there are currently sev-
eral options to assist the speech communication for laryn-
gectomees (i.e., esophageal speech, tracheo-esophageal
speech, and electrolarynx), these approaches frequently
produce an abnormal sounding voice with a pitch that is
aberrantly low and limited in range [1,20]. An alternative
technology with natural output voice is highly needed.
Silent speech interfaces (SSIs) have potential to pro-
vide an alternative way to assist those patients to pro-
duce speech with natural sounding voice [6]. A number
of techniques have been used to record non-audio artic-
ulatory information such as ultrasound [5, 16], surface
electromyography (EMG) [8, 17], and electromagnetic

articulograph (EMA) [9, 32]. To accomplish the map-
ping from recorded articulatory movements to speech
sounds, an SSI combines two technologies: silent speech
recognition [28,33] and text-to-speech synthesis [14,22].
Silent speech recognition recognizes words or sentences
from articulatory movements; text-to-speech synthesis
then plays synthesized sounds based on the recognized
text, which is ready for this application [32]. SSIs have
even potential to use the patient’s own voice (recorded
pre-surgery) to drive the speech output [1]. Thus, the
current research focuses on the development of accurate
silent speech recognition algorithms.

In the past decades, various machine learning tech-
niques have been successfully used for speech recog-
nition from acoustic data, articulatory data, or com-
bined, including the traditional Gaussian mixture model
(GMM)-hidden Markov model (HMM) [18, 27, 34, 35].
Other approaches include multi-stream HMM [11, 15],
support vector machine [28, 33], neural network [25],
dynamic Bayesian network [26], and subspace GMM
(SGMM) [8].

Deep neural network (DNN)-HMM has recently been
applied in (acoustic) speech recognition [7, 21], which
shows significant improvements over the long standing
approach GMM-HMM. DNN-HMM has been adopted
in commercial speech recognition systems (e.g., Google
voice, Apple Siri) [12]. The promise of DNN-HMM to
improve the acoustic speech recognition accuracy moti-
vated the application of DNN in silent speech recogni-
tion.

DNN-HMM, however, has rarely been used in silent
speech recognition (i.e., without acoustic information).
Canevari and colleagues used DNN-HMM for speech
recognition with combined acoustic and articulatory fea-
tures, which showed performance improvement over
GMM-HMM [3,4]. Their experiments did not include
a comparison of DNN-HMM and GMM-HMM for silent
speech recognition from articulatory features only. Thus,
it remains unknown whether DNN-HMM outperforms
GMM-HMM in silent speech recognition.

This paper investigated the use of DNN-HMM in
silent speech recognition from articulatory movements
data (i.e., without using acoustic data). The performance
of DNN-HMM was compared with the traditional ap-
proach, GMM-HMM. The articulatory movement data in
the MOCHA-TIMIT data set [34] was used in the ex-
periment. The MOCHA-TIMIT contains 2-dimensional



(vertical and anterior-posterior) movement of sensors at-
tached to the tongue, lips, and other articulators of two
speakers. DNNs with different number of hidden layers
were also tested and the results were reported.

2. DEEP NEURAL NETWORK

Speech pattern recognition problem is of finding (decid-
ing) appropriate word sequences based on speech (or ar-
ticulatory) data. This procedure can be represented using
Bayes theorem as follows:

W = argmaxp(W|0)
w
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o< argmaxp(O|W)p(W)
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where W is word sequences, O is observation vectors
(can be either speech waveforms or articulatory move-
ments; ideally can be any kind of data representing
speech characteristics), W is the optimal word sequences,
and p(W) is a prior probability obtained from a language
model. In Eq. 1, p(O|W) is a posterior probability that
can be obtained from the model trained in advance. This
model could be either GMM-HMM or DNN-HMM. In
many tasks, DNN-HMM showed the significant perfor-
mance improvement compared with GMM-HMM as re-
placing GMM to DNN [12,21]. We adopt the DNN train-
ing approach based on restricted Boltzmann machines
(RBMs) [13].

A probability to visible and hidden vector pair is rep-
resented by following energy function.

eXp {—E(V, h)}
@ k) = P —Ew b))

where v and h are the binary state vectors of visible and
hidden unit, respectively. An energy function for joint
vector pair, (v,h), of the visible and hidden units are
given by

(3) E(v,h)=—dv—b'h—VCh

where a and b are the bias vectors and C is the weight
matrix between a and b. RBM pre-training of each layer
is usually performed by contrastive divergence based on
maximum likelihood criterion [12,13,21]

(4) 6= arg;naxHZp(o,,M@)
©h

where @ = {C,a,b} and o, is the observation vector at
frame (time) ¢.

The stacked RBMs (DNN) are trained in iterative man-
ner. The trained DNN are subsequently fine-tuned us-
ing backpropagation algorithm. A detailed explanation
and further discussion of the DNN-HMM can be found
in [12,13,21].

3. EXPERIMENTAL DESIGN
3.1. Data set

MOCHA (Multi-CHannel Articulatory)-TIMIT Data set
was used in this project [34]. MOCHA-TIMIT data set
has 920 sentences (extracted from TIMIT database) from
2 British English speakers (1 male - MSAKO and 1 fe-
male - FSEWO0). This data set consisted of simultaneous
recordings of speech, articulatory movement data, and
other forms of data.

Only the articulatory movement data was used in the
experiment. The articulatory data was collected using
an Electromagnetic Articulograph (EMA, Carstens Medi-
zinelektronik GmbH, Germany) by attaching sensors to
upper lip (UL), lower lip (LL), upper incisor (UI), lower
incisor (LI), tongue tip (TT), tongue blade (TB), tongue
dorsum (TD), and velum with 500 Hz sampling rate.
Each sensor has x (front-back) and y (vertical) trajecto-
ries. At this stage, we used only the data from tongue and
lips, the primary articulators. Data from upper incisor,
lower incisor, and velum will be used in future experi-
ments. Therefore, 10-dimensional x and y motion data
obtained from UL, LL, TT, TB, and TD were used.

3.2. Experimental Setup

A 5-fold cross validation strategy with a jackknife proce-
dure was performed to set training and test sets in the
experiment [27,34]. In each of the five executions, a
group of 92 sentences was selected for test with the re-
mained 368 sentences for training. Due to the high degree
of variation in the articulation across speakers, speaker-
dependent recognition was conducted. The average train-
ing data length for each cross validation becomes 21.3
mins (368 sentences) for the female speaker and 20.6
mins (368 sentences) for the male speaker. The average
test data length along the five cross validations is 5.3 mins
(92 sentences) for the female speaker and 5.2 mins (92
sentences) for the male speaker, respectively.

Articulatory features from the corpus were extracted
using EMAtools [23]. The original articulatory features
and their first and second derivatives were concatenated
to build 30-dimensional feature vectors. The “breath”
segments were merged with “silence” for both train-
ing and testing [27]. For DNN-HMM input features,
the original features were concatenated to create 270-
dimensional feature vector (9 x 30 articulatory move-
ments vector) with 4 preceding, current, and 4 succeeding
frames. As concatenating multiple feature vectors in time
domain, DNN-HMM has time-dependent context infor-
mation which GMM-HMM takes using multiple states
[21]. The GMM-HMM system was trained using maxi-
mum likelihood estimation (MLE). The DNN-HMM sys-
tems were pre-trained using contrastive-divergence algo-
rithm on RBMs and fine-tuned using back-propagation
algorithm. A bi-gram phoneme language model was
trained using all 44 phonemes provided in label files of
the corpus and used to construct the final weighted fi-
nite state transducer (WFST). Table 1 shows the detailed
experimental setup. The training and decoding were per-



Table 1: Experimental setup.

Feature

Low pass filtering [30]
Sampling rate

Feature vector

40 Hz cutoff Sth order Butterworth
100 Hz (down sampled from 500 Hz)
articulatory movement vector + A +
AA (30 dimensions)

Frame Length 25 ms

Frame rate 10 ms

Mean normalization Applied

GMM-HMM topology
Monophone

context-independent

137 states (44 phones x 3 states,

5 states for silence), ~ 14 mixtures
3-state left to right HMM

Training method Maximum likelihood estimation (MLE)

DNN-HMM topology
Monophone

context-independent

270 input layer dimension

137 output layer dimension
(including 5 outputs for silence)
1,024 nodes for each hidden layer
1 to 6-depth hidden layers

Training method RBM pre-training, back-propagation

Language model bi-gram phoneme language model

formed using the Kaldi speech recognition toolkit [24].

Phoneme error rate (PER) was used as a performance
measure, which is the ratio of the sum of the number of
substitution, deletion, and insertion errors over the total
number of phonemes. PER is given by

D+1
(5) PER = S+D+1

where S represents the number of substitution errors, D is
the number of deletion errors, I stands for the number of
insertion errors, and N is the total number of phonemes in
the test set. Finally, PERs for each test group in the five
cross validations were averaged as the overall PER.

4. RESULTS AND DISCUSSION

The experimental results are shown in Fig. 1. DNN-
HMM with different number of hidden layers outper-
formed GMM-HMM for both speakers, which is encour-
aging. A two-sample 7-test was used to check the signif-
icance between the results obtained using GMM-HMM
and DNN-HMM. The significances were marked in Fig.
1. For the male speaker (MSAKO), 5-layer DNN-HMM
had the best performance (lowest PER), 35.5% (5.4% ab-
solute PER reduction), whereas GMM-HMM had 40.9%
PER. For the female speaker (FSEWO0), 5-layer DNN-
HMM had the best performance, 37.1% PER (4.5% ab-
solute PER reduction), whereas GMM-HMM had 41.5%
PER.

In [4], when only audio data was used, PER was re-
duced from 38.0% (using GMM-HMM) to 32.2% (5.8%
absolute PER reduction) using DNN-HMM. When us-
ing both acoustic and articulatory data, DNN-HMM im-
proved performance from 32.2% (acoustic features only)
to 23.7% (combined features; 8.5% absolute PER reduc-
tion). Although higher PERs were expected in our ex-
periments, where only articulatory features were used, a
similar level of improvement of DNN-HMM over GMM-
HMM was also observed.
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Figure 1: Phoneme Error Rate (PER; %) of GMM-
HMM and DNN-HMM experiment. Significances be-
tween the results obtained using GMM-HMM and
DNN-HMM with different number of hidden layers are
marked: * p < 0.05, ** p < 0.01, *** p < 0.001.

The performance of DNN-HMM was consistently im-
proved as the number of hidden layers was increased. As
shown in Fig. 1, the performance reached the best when
the number of hidden layers is 5 for both female and male
speakers. Even though MOCHA-TIMIT is a relatively
small data set, the results showed similar trends with
the previous acoustic speech recognition on the TIMIT
task using DNN-HMM [21]. However, further investiga-
tions (e.g., fine-tuning of the model structure including
the number of nodes for each layer) are needed to under-
stand how the number of hidden layers in DNN-HMM
impacts the silent speech recognition performance.

Plosives, fricatives, and affricates are expected to be
challenging to recognize from articulatory movements
due to their articulation characteristics. For example,
some voiced and voiceless plosive pairs (e.g., /p/ and /b/)
have the same place of articulation. Thus it is interest-
ing to see if DNN-HMM can achieve better results than
GMM-HMM on distinguishing them. Tables 2 to 5 show
the confusion matrices for classifying plosives (i.e., /p/,
/bl, {1, /d/, /k/, and /g/), fricatives (i.e., /f/, /v/, /s/, and
/z/), and affricates (i.e., /t[/ and /d3/) using GMM-HMM
and DNN-HMM for the male and the female speaker, re-
spectively. There are only a few samples for fricative /3/
in MOCHA-TIMIT database. Thus, /3/ was excluded in
the tables. The numbers in the tables are sum of raw num-
bers of samples along the five cross-validations. The row
numbers are the actual samples and the column numbers
are the predicted samples. The diagonal numbers are the
correctly predicted number of samples.

DNN-HMM showed better recognition of plosives,
fricatives, and affricates than GMM-HMM for both
speakers. The diagonal numbers in Tables 3 and 5
(DNN-HMM) are all greater than those in Tables 2 and
4 (GMM-HMM) except for /b/ and /k/ for the female
speaker. DNN-HMM achieved less numbers of deletions
and insertions than GMM-HMM. However, DNN-HMM
showed more misclassifications for the voiced-voiceless
plosive pairs with the same place of articulation, for ex-
ample, labial plosives /p/ - /b/, alveolar plosives /t/ - /d/,
and velar plosives /k/ - /g/. The results indicated DNN-
HMM did not improve the results for distinguishing those
plosive pairs with the same place of articulation but dif-
ferent voice feature (voiced vs voiceless), although DNN-



Table 2: Confusion Matrix for selected plosives, fricatives,
and affricates using GMM-HMM for the female speaker.

Plosives Fricatives Affricates
/p/ /b/ 1t/ [d] [k/ [9/ [f/ [N/ [s/ [z/ [t/ /d3/ Del

1

Dlosives 6 430 72 5 2| 1 3 12 21| 2 3|21
1 1100 164 5 1 2 9 4| 2 2|7
1 1386 51 1 2 51
1 79 57 1 1] 26
2 1 3 1 2[162 29 1 1 40
o 1 1 2 45115 1 1 39
UL 11 14 s 3| 1 444 108 2| 98
11 14 4 7 1 115 232 1] 89
- T 3 1 37 25| 13
cetes 7 11 2 2 1 14 s7| 32

8 8 27 19 32 5| 8 9 22 17] 10 6

Table 4: Confusion Matrix for selected plosives, fricatives,
and affricates using GMM-HMM for the male speaker.

Plosives Fricatives Affricates
/p/ /b/ /t/ [d/ [k/ [9/ [f/ [v/ [s/ [z/ [t/ /d3/ Del
101 12

Plosives

1 340 55 2 2 75

ala o w

1 2 1 73 53 40

1 2 4 1 11151 31 2 2 51

- / 1T 1 2 34114 2 1 49
2 21 8 1 2| 1 416 88 119

29 7 4 1 2 94232 1 2| 97

. / 2 11 33 26| 14
Affricates 1 5 15 57| 24

9 8 27 11 19 71 2 8 9 11| 6 7

HMM is generally better than GMM-HMM in classi-
fying all the plosives. A similar pattern was observed
for fricatives. DNN-HMM had more misclassifications
than GMM-HMM in distinguishing those fricative pairs
with the same place of articulation but different voice
feature (voiced vs voiceless), for example, labio-dental
fricatives /f/ and /v/ and alveolar fricatives /s/ and /z/.
In a word, it seems that the overall error rates were re-
duced for classifying plosives and fricatives using DNN-
HMM, inherent difficulty for voiced and voiceless con-
sonant classification still remains when acoustic infor-
mation is not available. Uraga and Hain showed acous-
tic features (mel-frequency cepstral coefficients; MFCCs)
contains more information than articulatory features for
classifying those voiced and voiceless plosives [27].

Although the experimental results have illustrated the
significant performance improvement of DNN-HMM
over GMM-HMM, we expect DNN-HMM still has po-
tential to further improve silent speech recognition ac-
curacy when combined with other approaches used in
acoustic speech recognition (e.g., speaker/environment
adaptation [19]).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the use of DNN-HMM
in silent speech recognition from articulatory movements

Table 3: Confusion Matrix for selected plosives, fricatives,
and affricates using DNN-HMM for the female speaker.

Plosives Fricatives Affricates
/p/ /b/ 1t/ [d] [k/ [9/ [f/ [N/ [s/ [z/ [t/ /d3/ Del

68 [ 49

131 1 3 1| 47

. 4 2409 101 3 1 2 4 19| 3 2|238

Rlosives 3 109 188 2 11 6| 3 1|42

2371 66 1 1 48

71 73| 1 1 26

4 T 6 1185 30 1 1 1| 22

o 1 2 M1 1 27

UL 2 1 3 2 1 1 470 104] 2 1| 95

7 5 1 111 265 74

- 4 1 45 18] 17

Affricates|| 6 2 21 64| 20
5 11 20 18 14 3| 5 4 19 14| 4 4

Table 5: Confusion Matrix for selected plosives, fricatives,
and affricates using DNN-HMM for the male speaker.

Plosives Fricatives Affricates
/p/ /b/ /t/ [d] [/ [9/ [f/ /v/ [s/ [z/ [t/ /d3/ Del
1 1

71

122 3 1
. 2 1 433 74 1 6| 4 1 5 23 2 51242
Flosives 3 59 215 1l 1 1 13 2| 2 167
1 1 347 66 1 68
84 79 15
2 2 2178 45 1 22
Fricatives b . SoRI5] 2 22
1 15 3 4 446 103 103
20 9 1 1113 268 2 58
. /] 1 1 11 45 25] 10
Affricates 4 3 5 27 70| 18

3 11 21 12 9 12| 4 2 15 12 2 6

(i.e., without using acoustic data). The performance of
DNN-HMM and GMM-HMM was compared. Experi-
mental results illustrated the significant performance im-
provement of DNN-HMM over GMM-HMM.

Future directions include (1) the use of time-series
data processing techniques for variation reduction (e.g.,
symbolic aggregation representation [28]), (2) speaker-
independent silent speech recognition [31] using DNN-
HMM (extension to context-dependent triphone system),
(3) investigating adaptation schemes [10], and (4) re-
moving redundant information between sensors for silent
speech recognition [4,29].
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