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ABSTRACT 
 
This study compares the speaker recognition 
strengths based on suprasegmental duration and 
intensity variability in the speech signal using 
artificial neural networks. Such algorithm can well 
capture the nonlinear effects in the data, and is more 
robust against noise in the data. Three rounds of 
classification tasks were performed with 1) duration 
metrics, 2) intensity metrics, and 3) the combination 
of duration and intensity metrics as the independent 
variables. The results indicated that both intensity 
and combined metrics significantly outperformed the 
duration metrics. Moreover, the combination of 
intensity and duration metrics showed higher 
probability of improved speaker classifications than 
intensity metrics over duration metrics.     
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1. INTRODUCTION 

Speech production is a complicated process 
underpinned by sophisticated neuromuscular 
programming for the motor control of speech organs 
[6]. The movements of speech organs, like the 
movements of other parts of the body (see [20, 28] 
for the example of human gait), are highly 
idiosyncratic, and such idiosyncrasy should find its 
acoustic correlates in the speech signal, particularly 
in the time domain.  
      In a previous research project of our laboratory 
[7, 17], the researchers applied the widely used 
rhythm (duration) metrics (such as ∆C, ∆V, %V, 
varcoC, varcoV, rPVI-C, and nPVI-V), which were 
originally developed by [5, 9, 19, 22, 27] to 
segregate traditionally categorised “stress-” and 
“syllable-timed” languages [1, 4, 18, 21], and have 
found significant speaker individualistic temporal 
characteristics [7, 17].       
      Along the same line of reasoning, we also 
hypothesised that individualistic movements as well 
as anatomical peculiarities of speech organs should 
result in idiosyncratic energy distribution in the 
speech signal, and quantifying intensity variability in 

the signal should capture such idiosyncrasy. 
Enlightened by the duration metrics, we [2, 10] have 
developed intensity metrics (please see the 
appendix) to calculate the syllabic intensity 
variability (either the mean RMS or peak RMS of 
each syllable), and the results showed that 
significant effects of the speaker existed for all the 
intensity metrics [2, 10].  
      Our long-term research goal is to explore how 
successful automatically extracted temporal as well 
as intensity features will contribute to speaker 
recognitions, so that they can be implemented in real 
speaker recognition systems. The present study is an 
intermediate step towards this goal: we used the 
human labelled TEVOID corpus (see [7, 17] and 
§2.1 for more information) and calculated the 
duration and intensity metrics which were fed into 
the well-established classification algorithm of 
artificial neural networks (abbreviated as ANN 
hereafter), and found that a combination of both 
duration and intensity metrics gave the best 
performance of offline speaker recognitions.   
      The reasons for choosing ANNs were threefold: 
1) nonlinear effects in the data, which cannot be 
controlled for a priori, can be modelled by the 
algorithm [12]; 2) being an eager learner, the ANN 
generalises the training data before receiving queries 
from the test data [25], so that the classification is 
less susceptible to noise; and 3) as a commonly 
accepted classification algorithm, it can be used as a 
reference of success for developing new algorithms, 
which is also in our research pipeline. Primers to the 
ANN are available as [8, 14, 16], and phonetic 
research using ANNs include [15, 23, 24, 26], where 
the latter two focus on speaker recognition.  

2. METHOD 

2.1. The Corpus 

The TEVOID (Temporal Voice Idiosyncrasy) corpus 
[7, 17] was constructed to investigate speaker 
individualistic temporal characteristics in the speech 
signal. For the present study, the read speech of the 
corpus was analysed (16 native speakers of Zürich 
German × 256 sentences = 4,096 sentences; wav 



audio format; sampling frequency = 44.1 kHz; 
quantisation depth = 16 bits). For more of the corpus 
construction, please refer to [7, 17].      

2.2. Measurements 

All the sound files in the corpus were labelled using 
Praat [3]. Tiers containing on- and off-sets of vocalic 
and consonantal intervals were employed for the 
calculations of %V, varcoV, nPVI-V, varcoC, and 
nPVI-C. Tiers containing on- and off-sets of voiced 
intervals were used for the calculations of %VO, 
varcoVO, and nPVI-VO. Tiers containing syllable 
boundaries as well as syllable peaks were applied to 
compute varcoPeak, nPVI-Peak, stdevM, varcoM, 
rPVIm, nPVIm, stdevP, varcoP, rPVIp and nPVIp. 
Descriptions of all the measures are listed in the 
Appendix. Praat scripts were applied for the 
computations, and the results were saved as tab-
delineated files before exporting to SPSS [13] for 
the constructions of neural networks (multilayers 
perceptron).  

2.3. ANN Topologies  

The corpus was randomly partitioned into a training 
set (70% of the corpus) and a test set (30% of the 
corpus). Three ANNs were modelled based on the 
same partitioned corpus using a. duration metrics 
only, b. intensity metrics only, and c. duration cum 
intensity metrics. The choices of ANN typologies 
were the same for all three models except the input 
covariates, which were the duration, intensity and 
combined metrics respectively. Table 1 presents 
more details of the ANN architectures, which were 
configured on a semi-arbitrary basis, because the 
purpose of the study was to compare the 
classification strengths rather than maximising 
classification rates. Nonetheless, we did venture a 
more complicated configuration of the networks 
(two hidden layers with 100 neurons in each), but 
the recognition time increased dramatically without 
remarkable improvements of the recognition rates.  
 

3. RESULTS AND DISCUSSION 

3.1. Speaker Recognition Rates 

The average speaker recognition rates yielded from 
the ANNs in the training set were 17.3% (duration 
only), 33.1% (intensity only), and 42.3% (duration 
cum intensity). The mean recognition rates 
calculated from the test set were 14.2% (duration 
only), 30.3% (intensity only), and 36.9% (duration 
cum intensity). Table 2 shows more descriptive 
statistics of speaker recognition rates in different 

choices of metrics. Figures 1 and 2 present the 
breakdowns of classification rates for each speaker 
in both training and test sets. 
 
Table 1: ANNs fitting information. 
 
Input 
Input covariates: duration metrics only; intensity 
metrics only; duration cum intensity metrics 
Rescaling method for covariates: Standardised 
Hidden layer (1 hidden layer) 
Number of neurons in the hidden layer: 10 + 1 bias 
Activation function: Sigmoid 
Output 
Dependent variable: speaker 
Activation function: Softmax 
Error function: Cross-entropy 
--------------------------------------------------------------- 
NB All networks are feedforward without recursions. 
 
Table 2: Descriptive statistics of speaker recognition rates 
(in %) with different independent variables.  
 

 mean std. dev. std. err. min. max. 

(i) Training set 

D* 17.3 11.6 2.9 3.7 38.4 

I* 33.1 19.5 4.9 10.1 77.6 

C* 42.3 17.3 4.3 14.8 77.6 

(ii) Test set 

D* 14.2 13.1 3.3 0.0 39.4 

I* 30.3 19.2 4.8 9.5 73.2 

C* 36.9 19.5 4.9 11.9 67.1 

* D = duration metrics; I = intensity metrics; C = 
duration cum intensity metrics. 
 
Figure 1: Speaker recognition rates in the training set (X-
axis: speaker ID; Y-axis: recognition rate in %). The 
horizontal dashed line indicates the chance level (100% ÷ 
16 ≅ 6.3%).  
 

 



Figure 2: Speaker recognition rates in the test set (X-axis: 
speaker ID; Y-axis: recognition rate in %). The horizontal 
dashed line indicates the chance level (100% ÷ 16 ≅ 
6.3%). 
 

 
 

3.2. Comparisons of Recognition Strengths 

First of all, the distribution normalities of the 
recognition rates from three ANN models (both 
training and test data) were evaluated using the 
Shapiro-Wilk test, and the results indicated no 
serious deviations from normality (all p values ≥ 
0.05).    
       
Table 3: Results of Bartlett’s tests and paired t-tests (2-
sided). 
 
Train vs. 

Test 
Bartlett’s tests t-tests 

K2 (df=1) p t (df=15) p 
duration 0.2107 >0.6 3.7206 =0.002 
intensity 0.0056 >0.9 2.0576 >0.05 

combined 0.1908 >0.6 3.9097 =0.001 
 
Table 4: Results of Bartlett’s tests and ANOVAs. 
 

 
 Bartlett’s tests            ANOVAs 

K2 
(df=2) p F 

(df=2,45) p 

durationTrain 
intensityTrain 
combineTrain 

3.9451 >0.1 9.4043 <0.0004 

durationTest 
intensityTest 
combineTest 

2.6837 >0.2 7.1583 <0.002 

 
      Paired samples t-tests were run in order to 
compare if the training set recognitions were 
significantly better than the test set recognitions. 
Bartlett’s tests indicated the data variances were 
homogenous; therefore, no adjustments were 
needed. Tables 3 shows the statistical results: only 
the recognition rates between training and test sets 

using intensity measures were not significantly 
different. The results indicated some degrees of 
over-adaptations of the training data, which is one of 
the weaknesses of the ANN [16].  
      Finally, univariate ANOVAs were utilised and 
the results indicated that significant effects of the 
metrics choice existed (Table 4 shows the statistics). 
Bartlett’s tests confirmed the equalities of variances, 
so no adjustments were necessary (also see Table 4). 
      Post hoc pairwise comparisons (Bonferroni 
adjusted) indicated that in the training set, intensity 
metrics and intensity cum duration metrics were 
significantly better than duration metrics alone at 
idendifying speakers (Trainpintensity:duration < 0.03, 
Trainpcombine:duration < 0.0003). However, the intensity 
metrics and the combined metrics were not 
significantly different (Trainpintensity:combine > 0.4). The 
test set showed similar patterns: intensity metrics 
and combined metrics performed significantly better 
in speaker recognitions, but the intensity metrics and 
combined metrics were not significantly different 
(Testpintensity:duration < 0.04, Testpcombine:duration < 0.002, 
Testpintensity:combine > 0.8). Figure 3 visualises the 
patterns.  
      This suggests that although both duration and 
intensity measures had significant speaker effects [7, 
17, 10, 2], intensity variability in the speech signal 
showed more strength compared with duration 
metrics to classify speakers. However, albeit the 
speaker discriminability of duration cum intensity 
measures were not significantly different from 
intensity measures in post hoc tests, the significance 
level of pintensity:duration (0.03) was a hundred folds the 
significance level of  pcombine:duration (0.0003) in the 
training set. In the test set, the significance level of 
pintensity:duration (0.04) was twenty folds the significance 
level of  pcombine:duration (0.002).  
      In other words, alghough both combined metrics 
and intensity metrics were significantly better than 
duration metrics for the recognition of speakers in 
both training and test sets, the probability that the 
combined metrics significantly improved over 
duration metrics increased 2.97 percentage points 
than the intensity metrics alone for the training data 
((1 − Trainpcombine:duration) − (1 − Trainpintensity:duration) = (1 − 
0.0003) − (1 − 0.03) = 0.0297), and 3.8 percentage 
points for the test data ((1 − Testpcombine:duration) − (1 − 

Testpintensity:duration) = (1 − 0.002) − (1 − 0.04) = 0.038). 
      In addition, it was also assumed that only two 
rounds of speaker classification tasks (on  the basis 
of intensity cum duration metrics and intensity 
metrics alone) had been performed. Paired samples 
t-tests showed that the combined metrics 
significantly improved recognition rates than 
intensity metrics alone in the training set (t = 4.1527, 



2-sided, p < 0.0009, with df = 15) and test set (t = 
2.9588, 2-sided, p < 0.01, with df = 15).  
 
Figure 3: Error bar graph showing general speaker 
recognition rates (mean ± 1 standard error) with different 
metrics choices.    
 

 

5. CONCLUSION 

The present study explored speaker recognition 
strengths using duration variability, intensity 
variabily and the two combined in the speech signals 
with the feedforward ANN. The results suggested 
that intensity metrics and intensity cum duration 
metrics were stronger in speaker recognitions. 
      Compared with our previous studies, we can see 
that speaker recognition success depends on the 
recognition algorithms as well. For instance, the 
TEVOID corpus with the intensity metrics as 
described in the current study alone yielded different 
degrees of correct classifications using the k-nearest 
neighbours (kNN), feedforward ANN, and 
multinomial logistic regressions [2, 11], where the 
kNN showed poorest performance (average hit rate ≅ 
12%), and the logistic regression showed the best 
performance (average hit rate ≅ 38%). There is 
potential to design or optimise recognition 
algorithms and achieve higher recognition rates with 
the combination of intensity and duration measures.  
      In addition, we have also observed that although 
significant between-speakers variability has been 
proven by statistical tests, it does not necessarily 
entail high recognition rates using available 
classification algorithms (duration metrics in 
particular).    
      Open questions for future research are how 
robust the presented measures are in the context of 
degraded and distorted speech. Also, how speaker 
recognition rates would increase if the duration and 
intensity measures are coupled with spectral 
measurements is worth further examinations. 
Moreover, how should the metrics and classification 

algorithms be optimised is also subjective to further 
investigations. On the engineering side, a fully 
automatic extraction of the metrics from the acoustic 
signal is also in our research agenda.    

6. APPENDIX−METRICS DESCRIPTIONS 

6.1. Duration Metrics  

� %V: Percentage of vocalic interval durations out 
of the total sentential duration.   
� %VO: Percentage of voiced interval durations out 
of the total sentential duration. 
� varcoC: Variation coefficient (standard deviation ÷ 
mean) of consonantal interval durations.  
� nPVI-C: Mean of locally averaged pairwise 
consonantal interval duration differences.  
� varcoV: Variation coefficient of vocalic interval 
durations. 
� nPVI-V: Mean of the locally averaged pairwise 
vocalic interval duration differences. 
� varcoPeak: Variation coefficient of syllabic peak-
to-peak interval durations. 
� nPVI-Peak: Mean of the locally averaged pairwise 
syllabic peak-to-peak interval duration differences. 
� varcoVO: Variation coefficient of voiced interval 
durations. 
� nPVI-VO: Mean of the locally averaged pairwise 
voiced interval duration differences. 

6.2. Intensity Metrics  

� stdevM/P: Standard deviation of mean/peak 
intensity of each syllable. 
� varcoM/P: Variation coefficient of mean/peak 
intensity of each syllable. 
� rPVIm/p: Mean of the pairwise mean/peak 
intensity differences of consecutive syllables.  
� nPVIm/p: Mean of the locally averaged pairwise 
mean/peak intensity differences of consecutive 
syllables.  
      Mathematical formulae of these metrics can be 
found in [17] and [10, 11].  
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