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ABSTRACT

This paper aims to predict mutual intelligibility
(defined here as cross-dialectal word recognition)
between 15 Chinese dialects from lexical and
phonological distance measures. Distances were
measured on the stimulus materials used in the
experiment. Their predictive power was compared
with earlier similar distance measures based on
large word lists. Predictors based on just the
stimulus materials used afford the better prediction.
Segmental Levenshtein distance was the strongest
predictor, outperforming both lexical and tonal
similarity measures.

Keywords: Chinese dialects, mutual intelligibility,
lexical distance, segmental distance, tone distance,
word recognition, semantic categorisation task.

1. INTRODUCTION

1.1 Taxonomy of Chinese dialects

The Sino-Tibetan language family covers an
enormous geographic area on the Eurasian
continent. A rough estimate is that one of every
four inhabitants of our planet is a native speaker of
a language belonging to this family. As the name
indicates the family comprises Chinese (‘Sinitic’)
languages (or ‘dialects’ as Chinese linguists tend to
call these languages) on the one hand, and Tibetan
(Himalayan) languages on the other. In this paper
we will only deal with the Sinitic branch of the
language family. Chinese dialectologists agree that
there is a primary split in the Sinitic dialects into a
Mandarin branch and a Southern (non-Mandarin)
branch, each comprising a number of (sub)groups.
In this paper we will adopt the taxonomy proposed
by Li [5] in his maps A1 and A2. We target 15
dialects, which are related as indicated in Table 1.
A map of China showing the approximate locations

where these 15 dialects are spoken is given in
Figure 1.

Table 1: Taxonomy of the 15 Chinese dialects targeted.

Mandarin branch Southern branch
Group Dialect Group Dialect
Zhongyuan Xi’an Wu Suzhou
South-west Chengdu Wenzhou

Hankou Gan Nanchang
Beijing Beijing Xiang Changsha
Jilu Ji’nan Min Fuzhou
Jin Taiyuan Xiamen

Chaozhou
Hakka Meixian
Yue Guangzhou

The map shows that the Mandarin dialects are
spoken in the Northern part of China, extending
from North-Eastern China into the Central and
Western parts of China. The Southern dialects are
typically found along the South-Eastern coast.

Figure 1. Approximate geographic locations of the 15 Chinese dialects
targeted.



1.2 Purpose of the study

From native listeners of 15 Chinese dialects we
collected judgments of linguistic similarity and
intelligibility of these dialects [7, 9]. This enterprise
yielded 225 combinations of speaker and listener
dialects for which we reported scores for judged
linguistic similarity and for judged intelligibility.
We established that judged intelligibility can be
predicted rather well from judged linguistic
similarity (and vice versa) with r = 0.888. Next, in
[8, 9], we collected functional intelligibility scores
for the same set of 225 combinations of speaker and
listener dialects, using separate tests to target
intelligibility at the isolated-word and at the
sentence level. We then established, first of all, that
these two functional intelligibility measures
converged with r = 0.928; Second, we wanted to
know the extent to which functional intelligibility
(the ‘real thing’) in the more recent papers could be
predicted from the ‘quick and dirty’ judgment tests
of our earlier work. If near-perfect prediction were
possible, we would not have to apply cumbersome
functional tests in the future, but might rely on the
more convenient judgment tests. The results
revealed high correlation between the functional
word and sentence intelligibility scores and the
intelligibility judgment scores (r = 0.772 and 0.818,
respectively) but not high enough to advocate the
unqualified use of judgment testing as a more
efficient substitute for functional testing.
In the present paper we address just one part of

the functional intelligibility data, which is the cross-
dialect recognition of isolated words. We will
describe a functional word intelligibility test which
is quick and easy to administer. We will then
present the mutual intelligibility data at the word
level. These results reflect the taxonomy in table 1
reasonably well, showing that words are easier to
recognize in a non-native dialect as the dialect is
genealogically closer to the native dialect of the
listener. In the second part of the paper we will
present linguistic distance measures computed on
the 15 target dialects. Some of these measures were
copied from existing literature, others we computed
ourselves on a variety of sources. In our earlier
studies, we only had at our disposal language
resources (digital dictionaries, sound and tone
inventories, frequency counts) based on large word
lists. In the present paper we computed linguistic
distance measures on the stimulus materials
actually used in our word recognition experiment.
The crucial question we aim to answer in this study
is: which type of linguistic distance measures
provides better prediction of cross-dialect word
recognition: (i) overall measures collected on large

corpora or specific measures computed for the
stimulus materials actually used?

2. WORD RECOGNITION RESULTS

Thirty speakers (one male, one female for each of
the 15 dialects) recorded 150 words (the same set of
words/concepts in all 15 dialects) in their native
dialects. The words were divided into ten semantic
categories with 15 words in each category (eight
main categories, two of which were subdivided): 1.
body parts, 2A. sweet fruits/nuts, 2B. vegetables,
3A. four-legged animals, 3B. other animals, 4.
textile fabrics/articles of clothing, apparel, 5.
orientation in time/space, 6. natural phenomena, 7.
perishables (food/drinks other than fruits and
vegetables) and 8. verbs of action/things people do.
Stimulus words were blocked over listeners, such
that (i) each listener heard each of the 150 words
only once, (ii) each of the 15 listeners in one dialect
group heard each version of a word in a different
dialect, so that (iii) every listener heard one-
fifteenth of the materials in each of the 15 dialects.
Listeners took part in the experiment in

individual sessions. They hailed from local
communities, in one town or village. They filled in
questionnaires indicating that they were born and
raised in their local town or village and had not
spent longer periods of their life outside the dialect
area (for speaker-individual characteristics, see
Table 4.1 in [9]). In all, 225 listeners (15 listeners
for each of the 15 dialects) listened to (different)
words in each of the 15 dialects and were instructed
to decide to which of the ten semantic categories
each word they heard belonged, and to guess when
they could not recognize the word presented (for
details see [10] and Ch. 4 in [9]. Correctness of the
responses was established automatically. This
yielded a dataset of 33,750 responses (150 words ×
225 listeners). Intelligibility scores were then
computed for each combination of speaker and
listener dialect, yielding a 15 × 15 = 225 cell matrix,
which we reproduce here as Table 2.
Mutual intelligibility was defined by Cheng [3]

as the mean of the intelligibility of speaker A for
listener B and of speaker B for listener A.
Averaging the AB and BA intelligibility scores was
applied to eliminate asymmetries. The averaging
operation was performed on all pairs of contra-
diagonal cells i, j and j, i in the 15 (speaker dialects)
by 15 (listener dialects) = 225 cells in the score
matrix we collected. We then deleted the redundant
part of the matrices, keeping only the non-
redundant lower triangle (without the main
diagonal), and used the remaining 105 scores in the
comparisons below.



Table 2. Percent correctly classified words broken down by 15
speaker dialects and 15 listener dialects. Double lines separate

Mandarin from Southern dialects.

Speaker
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Suzhou 65 20 25 17 21 15 23 22 23 29 26 29 39 28 29
Wenzhou 23 41 17 19 17 17 18 21 15 24 25 25 28 18 19
Guangzhou 23 18 55 25 25 29 40 21 19 33 34 33 38 25 29
Xiamen 20 14 23 39 19 25 19 19 12 18 19 25 26 17 16
Fuzhou 17 18 17 18 47 14 17 16 15 22 20 23 24 20 16
Chaozhou 18 12 23 22 23 68 15 10 15 23 27 29 24 24 23
Meixian 31 24 35 24 23 25 67 31 27 43 43 43 41 37 31
Nanchang 27 26 30 25 29 22 41 37 29 47 51 48 57 41 42
Changsha 31 22 31 24 31 20 34 31 48 47 49 47 60 38 43
Taiyuan 33 30 30 29 31 21 36 36 30 57 59 64 55 50 48
Beijing 64 41 63 45 53 38 61 51 54 76 83 74 72 65 70
Jinan 40 22 31 22 36 19 39 39 31 59 61 80 58 51 55
Hankou 37 29 33 28 41 22 42 33 35 63 59 67 81 53 47
Chengdu 28 24 30 32 35 19 49 36 38 62 59 61 70 72 56
Xi’an 47 36 43 27 35 23 48 43 47 63 64 67 65 55 59

3. LINGUISTIC DISTANCE MEASURES

Two objective distance measures were copied from
[3]. We call these the Phonological Correspondence
Index (PCI) and the Lexical Similarity Index (LSI).1
The PCI is a measure that expresses the complexity
of the rule system that is needed to convert
phonemic transcriptions (including tones) in dialect
A to their cognate form in language B. The more
complex the rule system, the larger is the distance
between dialects A and B. Note that this is the only
measure in our study that is not symmetrical: the
rule set that converts A to B may be more or less
complex than the set that converts forms from B to
A (for details, see [3]). We transformed the PCI
distance matrix to a symmetrical version as
explained above. LSI was conceptually defined by
[3] as the percentage of cognates shared by two
dialects. This is a symmetrical measure. Obviously,
the larger the percentage of shared cognates the
easier it should be for a speaker of dialect A to be
understood by a listener of dialect B (and vice
versa). Interestingly, the correlation between the
LSI and correct word cross-dialect classification
was high, with r = 0.875.
Earlier, we computed a large number of objective

1 For the analysis of the lexical similarity index the
selection had to be narrowed down further to 13 as no
data on Hankou and Taiyuan were included in the Cihui
word list.

measures on similarity between (pairs of) our
Chinese dialects [9, 11]. We computed structural
similarity measures based on a simple comparison
of the sound and tone inventories of the 15 dialects,
with and without weighing the sound units for their
lexical frequency. We also determined to what
extent words in all pairs of dialects are pronounced
the same, separately for segmental and tonal aspects.
This work was based on lists of phonetic
transcriptions of 764 words (basic characters) in
each of the 15 dialects made available by the
Chinese Academy of Social Sciences (CASS). We
will not try to summarize the results here. Suffice it
to say that the predictive power of all these
measures was poor (for details see [9, 11]).
It then occurred to us that better prediction of

cross-dialect word recognition scores might be
afforded by distance measures that were computed
on precisely the stimulus materials used in the
experiment. We asked Chinese dialect experts to
provide a phonetic transcription of the words
(segments plus diacritics, and tones) as recorded by
our speakers. On the basis of these transcriptions
we computed the same type of distance measures
that were computed before on the dictionaries and
word lists. Segmental similarity between all 105
pairs of target dialects were expressed in terms of
Levenshtein Distance (LD), a string edit distance
measure that yields a score between 0 (the string of
symbols that transcribes word A is identical to that
of word B) and 1.0 (words A and B do not share a
single symbol. We used the GABMAP software [4]
to compute the mean LD for all counterpart word
pairs in all pairs of the 15 target dialects. The
segmental distance was computed once on just the
base IPA symbols and a second time on the base
symbol plus diacritics, where a difference in
diacritic was given half the weight of a difference
between base symbols. The two measures turned
out to be very highly corrected (r = 0.985) but the
diacritic-based measure afforded a slightly better
prediction of word recognition – so this measure
will be used later. Note that LD was computed
across all 150 words, whether cognate or not; non-
cognates, obviously, yield large LD values. Next,
lexical similarity (LS) was established by
comparing the Chinese characters with which the
two equivalent words in a pair of dialects are
written. When the characters are the same, the
words are cognate, i.e. historically related, and
share (some of) their phonology. Cognateship was
set at 0 if the equivalents shared no characters, at 1
if all characters were shared, and at 0.5 in all other
cases. Finally, we computed tonal distance between
pairs of equivalent words. As is customary in
Chinese tonology [1, 2], tones had been transcribed



as sequences of one, two or three digits for each
syllable in a word, one digit for each mora (tonal
time slot in a syllable). Each mora could assume a
pitch value on a scale between 1 (lowest) to 5
(highest). Levenshtein distances were computed on
the three-digit tone strings for first syllables, second
syllables and third syllables separately on all word
150 pairs for each of the 105 pairs of dialects. Then,
following [12], we converted the 3-digit tone
representation to onset-plus-shape sequences, with
three possible onset levels: H(igh) = {4, 5}, M(id) =
3, L(ow) = {1, 2}. The remainder of the 3-digit
string (if present) was coded as either E(qual) = no
change, R(ise), F(all), P(eaking) = rise+fall or
D(ipping) = fall+rise. Levenshtein distances were
then computed on the onset+shape letter pairs.
Finally, we computed a geometric tone distance
measure [6] on the 3-digit strings for first, second
and third syllables separately, between all pairs of
equivalents in the 15 target dialects. Geometric tone
distance is used in musicology to compute the
auditory similarity between two melodies. After
length normalisation and alignment, the measure
computes the mean squared difference between the
pitches (on the scale from 1 to 5) in the 3-digit tone
representation for each syllable in an equivalent
word pair. The tone distance is then scaled between
0 (complete similarity) and 1 (no similarity at all).

4. REGRESSION ANALYSES

Our earlier study [9] has shown that cross-dialect
word recognition in our target dialects can be
predicted from linguistic distance measures
collected on large dictionaries and other non-
experiment-specific materials with considerable
success. Cheng’s [6] LSI (computed on a 2,770
item word list) basically does all the work, and
leaves no room for other distance measures to
contribute to the prediction of word recognition. Let
us now consider the question if better predictions
can be obtained by using the new measures based
on the specific stimulus materials used in our
experiment. Table 3 is a correlation matrix for the
new distance measures and the criterion variable
(word recognition scores given in table 2).

The best single predictor is the segmental LD.
Lexical similarity is a highly significant but poorer
predictor, and much poorer than Cheng’s Lexical
Similarity Index (see above). Tones predict cross-
dialect word recognition only to a limited extent,
where the onset+shape method is better than other
measures of tonal distance. Tonal predictions work
best when computed on first syllables.

Table 3. Correlation matrix for criterion (% words correct) and
11 predictors. LD = segmental Levenshtein distance, LS =

Lexical Similarity (% cognates shared), OS = Onset+shape, TD
= Levenshtein Tone distance, GE = Geometric tone distance.

W. corr.OS1 OS2 OS3 TD1 TD2 TD3 GE1 GE2 GE3 LD
OS1 .367
OS2 .210 .344
OS3 .119 .301 .415
TD1 .041 .360 .246 .058
TD2 .005 .116 .453 .193 .568
TDl3 -.211 -.074 -.016 .250 .136 .169
GE1 .235 .494 .087 .186 .310 .236 -.047
GE2 .034 .001 -.033 .002 .168 .478 .096 .542
GE3 .060 -.090 -.006 .316 -.033 .138 .317 .189 .328
LD -.829 -.243 -.092 -.038 -.034 -.037 .146 -.196 -.125 -.038
LS .600 .285 .170 .097 .085 .038 -.143 .073 .068 .042 -.633

r > .168: p < .05 (one-tailed); r > .235: p < .01 (one-tailed)

Finally, we regressed the new, experiment-specific
distance measures against the 105 cross-dialect
word recognition scores to determine the relative
importance of the parameters and the degree of
overall success.

Table 4. Results of multiple regression. In the stepwise method
the R2 values are cumulative. The absolute value of the beta
weight indicates the relative importance of a predictor.

Simultaneous entry Stepwise entry
Predictors R2  Predictors R2 
LD segm −.732 LD segm .687 −.786
O+S tone .164 O+S tone .716 .176
Lex Sim .098
All .721

When all predictors are entered simultaneously,
72% of the variance in the cross-dialectal word
recognition scores can be predicted. Using stepwise
entry, the most powerful predictor by far is the
segmental Levenshtein distance, which by itself
explains 69% of the variance. The onset+shape tone
similarity (in the first syllables of words) makes a
significant contribution, adding another 3 percent.
Other parameters do not make further contributions.
In [9], seven parameters were selected that could
account for 88% of the variance in simultaneous
entry mode and 81% in stepwise mode. However,
the contribution of the best single parameters
(simple correlation) was always smaller than that
found in the present attempt with predictors based
on the materials used in the experiment.

5. CONCLUSION

We conclude that predicting cross-dialect word
recognition is better when linguistic distance
measures are based on the stimulus materials used
in the experiment, but poorer when all distance
measures are used in multiple regression.
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