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ABSTRACT

The human hard palate shows between-subject varia-
tion that is known to influence articulatory strategies.
In order to link such variation to human speech, we
are conducting a cross-sectional MRI study on mul-
tiple populations. A model based on Bezier curves
using only three parameters was fitted to hard palate
MRI tracings using evolutionary computation. The
fits produced consistently yield high accuracies. For
future research, this new method may be used to clas-
sify our MRI data on ethnic origins using e.g., cluster
analyses. Furthermore, we may integrate our model
into three-dimensional representations of the vocal
tract in order to investigate its effect on acoustics and
cultural transmission.
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1. BACKGROUND

Human physiology varies from individual to indi-
vidual. Moreover, many anatomical properties are
shared within and differ between populations, e.g.,
craniofacial morphology [13]. Our current line of
research investigates one particularly interesting case
of this anatomical variation in humans: vocal tract
(VT) anatomy. More specifically, if variation with
respect to VT morphology introduces different costs
in producing different vocalizations, populations
sharing such morphology might come to use differ-
ent (between-population) phonetic distributions (cf.
[10]). This can happen through a process known as
(anatomically biased) cultural evolution (cf. [3, 5]).

While preliminary studies have shown that
between-subject variation in VT morphology indeed
exists and that it might subsequently lead to differ-
ent articulatory strategies [2, 11], large-scale cross-
sectional studies have so far not been conducted. In
our research, we are working to collect these much
needed data by MRI and intra-oral scanning on dif-
ferent populations. The data will then be used to
investigate any correlations between VT morphology
and phonetic and possibly phonological features used

in the populations’ respective languages.
As a way of condensing the data we will collect,

we developed a model of the hard palate (mid-sagittal
plane) aimed to describe the variation observed with
as little as three parameters (§2). Using a curve fit-
ting procedure, we verified that our model indeed
describes hard palate profiles with high accuracy and
yields very low error rates to all cases fitted (§3).
Furthermore, our optimization technique consistently
converges on positions that are close to a one-to-one
(isomorphic) mapping between hard palate profile
and parameter values. This shows that our three-
parameter model, in combination with our fitting pro-
cedure, may be used to accurately identify anatomical
properties of the hard palate (as in e.g., [11]).

2. MODEL DESCRIPTION

2.1. Bezier curve

A Bezier curve is a mathematical model (parametric
curve) that can be used to form higher-order splines.
Bezier curves are shaped by defining a number of
control points, which are (in sequence) connected
by control vectors (Fig. 1). The control vectors are
divided into equidistant segments, which are then
each interconnected between-parent-vector. The seg-
menting and interconnecting procedure is repeated
in recursive fashion until a sequence of singleton
vectors (i.e., not further divisible by recursion) re-
mains. This procedure is known as De Casteljau’s
algorithm (cf. Fig. 2). Effectively, one could imagine
the control points pulling on different parts on the
curve, each warping it with varying magnitudes and
directions (cf. [7]). Finally, the sequence of singleton
vectors is sampled and interpolated to yield the actual
Bezier curve (Fig. 1).

Our Bezier model was designed to approximate
the human hard palate on the mid-sagittal plane. In
Fig. 1, one can imagine the curve following the con-
tour of the lingual surface terminating at the central
maxillary incisors on the right, and transitioning pos-
teriorly into the velum on the left. The curve shown
in Figs. 1 and 2 has all its parameters set to a neu-
tral position. By varying these parameters, we can



Figure 1: The Bezier curve used to model the
mid-sagittal hard palate profile. Shown are the con-
trol points (solid dots), top-level control vectors
(between control points) and the resulting Bezier
curve itself (smooth black line). Segmenting reso-
lution is set to 100 segments per vector.
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Figure 2: The same Bezier curve as shown in
Fig. 1, but now with intermediate-level control vec-
tors displayed. For illustrative purposes, segment-
ing resolution was decreased to 10 segments per
vector.

← posterior anterior →

generate a wide variety of palate profiles (cf. §2.2).

2.2. Parameters

Our model is controlled with five parameters p
(where 0 ≤ p ≤ 1), each intended to capture one
particular palate feature:

Alveolar angle controls the angle of inclination
of the alveolar ridge from 180◦ (approximating
a sigmoidal profile) to 90◦ (approximating a
parabolic profile).

Alveolar weight modifies the ‘magnitude’ of
alveolar angle. For example, with a sig-
moidal profile, the onset of the upward inflection
coming from the incisors gets shifted more pos-
teriorly for higher values. With a parabolic pro-

file, the vertical onset (coming from the incisors)
gets amplified and in effect becomes steeper. If
set to 0, alveolar angle gets neutralized.

Palatal concavity increases the vertical dis-
placement between velar transition and palatal
roof. In effect, larger values increase the doming
of the hard palate. A value of 0 means the palate
can only decline moving towards the incisors.

Palatal fronting shifts the palatal roof more an-
teriorly for higher values. Depending on the
other parameter values, this generally results in
steeper inflections.

Rotation rotates the curve with a particular angle.

While the parameters are designed to have an intu-
itive interpretation, their effects on the Bezier curve
can still be complex. The parameters are abstract
entities that are meant to provide a less component-
driven (but more interaction-driven) formalization of
the hard palate. In doing so, we aim to increase the
model’s accuracy at a possible loss of comprehensi-
bility (but also avoiding over-simplification).

3. VALIDATION

3.1. Preliminary curve fit

3.1.1. Procedure

In order to validate our Bezier model (§2), we fitted
it to a sample of 28 MRI (from [14]) tracings of the
hard palate on the mid-sagittal plane.

Because our model is an instance of a 4th-order
Bezier curve, it cannot be considered a well-founded
relation (i.e., it cannot be represented as a mathemat-
ical function) and as such cannot be used in classical
(including non-linear) regression. Fitting our Bezier
curve is thus an optimization problem.

Previous research has shown that the application
of genetic algorithms (GAs) shows promising results
in fitting Bezier surfaces to three-dimensional point-
clouds [8]. Since our model is already constrained by
the parameters we laid out (§2.2), has some top-down,
informed dispositions, and is only two-dimensional,
we deemed GA application to be feasible.

The algorithm we implemented is a straightfor-
ward GA (Table 1). Solutions (individuals) are ‘ge-
netically’ encoded by five genes: one for each pa-
rameter. These genes encode the shape of the Bezier
curve (the ‘phenotype’). The mean squared error be-
tween phenotype and palate tracing determines the
‘fitness’ of each individual. This fitness measure is
then used for selection: only the fittest individuals
are able to survive and ‘reproduce’. Reproduction



works by mutating genes following a Gaussian distri-
bution (viz. asexual reproduction). A new generation
(the unison of parents and offspring) is then evalu-
ated, selected for and mutated again, etc. As such,
the Darwinian principles of variation, selection and
reproduction are hereby simulated and exploited to
find a close-to-optimal fit.

Table 1: GA parameters (cf. [6]).

Representation Floating-point valued vector V
(|V |= 5, {v ∈V : 0≤ v≤ 1})

Population size 100, initialized with 1000
Recombination None

Mutation Gaussian (µ = 0, σ = 0.01)
Parent selection Stochastic universal sampling

(s = 1.25)
Survivor selection µ +λ (with elitism)

N◦ replications 10

3.1.2. Results

Initial results when fitting our Bezier curve (§2) ap-
pear promising (Root Mean Squared Error (RMSE):
µ = 0.02, σ = 0.01, where 0 ≤ RMSE ≤ 1). The
most accurate fit obtained is shown in Fig. 3, the
least in Fig. 4.

Figure 3: The most accurate fit (0≤ RMSE ≤ 1).
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Figure 4: The least accurate fit (0≤ RMSE ≤ 1).
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To check for parameter-profile isomorphicity, for
each case we checked the dispersion (i.e., standard
deviation) of the parameters associated with the elites
(the best-fitted individual of an entire replication)

obtained during 10 replications of the GA. As can
been seen in Fig. 5, all parameters except rotation
converge on widely-dispersed values, averaging to a
dispersion-rate of ∼ 0.077 (for comparison’s sake, a
run with no selective pressure averages to ∼ 0.252).

Figure 5: Elite parameter values (vertical axes)
obtained from 10 replications (different shades)
of the GA. Horizontal axes denote the MRI case
fitted to. Weight parameter not shown. Note the
stability of rotation.
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Figure 6 shows the convergence of two parame-
ters in one illustrative case. Note the difference from
fronting with rotation: With fronting (and the
other parameters not shown here), there is a contin-
uous tendency for branching and drift, indicating a
well-tuned algorithm that avoids local optima. De-
spite this, rotation behaves much more rigidly. To-
gether with the unusually low dispersion values, this
suggests it being a disproportionately large factor in
the appearance of the hard palate profile (cf. §4).

Figure 6: The difference in convergence of the
fronting and rotation parameters.

3.2. Parameter constraining

3.2.1. Procedure

The Bezier model was designed to describe anatomi-
cal variation with a small number of parameters (§2).
As we saw in §3.1.2, with five parameters the error is
low indeed. However, the mapping between parame-
ters and the Bezier curve’s profile appears far from
isomorphic, as indicated by relative high parameter



dispersion rates (Fig. 5). Furthermore, some param-
eters (e.g., rotation) might be too large a factor in
the curve’s appearance for their use to be justified.
Others might be simply redundant.

To investigate these matters, all our tracings were
pre-aligned so that the angle of declination be-
tween the most posterior and anterior point equalled
∼ 4.88◦ (the sample average). Following this, we did
a pairwise comparison where we fixed the remaining
parameters to the sample averages obtained while
fitting the five-parameter model. Thus, in total, we
compared 64 conditions, i.e., the powersets of the
five parameters for both the default and pre-aligned
conditions.

3.2.2. Results

The error bars in Fig. 7 show that in the default con-
dition, fixing rotation markedly increases the error
rate (compare wrfca with wfca), and would account
for almost half of the error in the condition in which
all parameters were fixed to the five-parameter av-
erages (condition ∅). However, when we first pre-
align the MRI tracings, fixing the rotation parameter
has an almost negligible effect (compare wrfca with
� wfca). Furthermore, we see that fixing one more
parameter (besides rotation, i.e., conditions � wfc,
� wfa, � wca and � fca) does not increase the error
rates greatly as well.

Figure 7: Error rates (left) and parameter disper-
sion values (right) for selected conditions. Char-
acters on horizontal axes denote which param-
eters were subject to optimization: a = angle,
c = concavity, f = fronting, r = rotation,
w= weight. ∅ marks all parameters were fixed to
the five-parameter averages. � marks the MRI
images were pre-aligned. The dashed vertical
line marks the distinction between default and pre-
aligned conditions.
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When we inspect the parameter dispersion values,
we observe a general trend that fixing more param-
eters lowers dispersion. The decrease in especially
pronounced when comparing the five-parameter con-

dition (wrfca) with the four-parameter conditions
(wfca and � wfca). Going to the three-parameter
conditions (� wfc, � wfa, � wca and � fca) further
lowers dispersion to close-to-null values.

Altogether, these results indicate that we can trim
the five-parameter model to a three-parameter itera-
tion without increasing error-rates while simultane-
ously neutralizing parameter dispersion.

4. DISCUSSION

Our study has proposed using a Bezier curve to model
the contour of the lingual surface of the hard palate
on the mid-sagittal plane (§2.1). A genetic algorithm
was used to yield high accuracies in fitting the Bezier
curve to palate MRI tracings (§3.1.1).

The Bezier curve can be adjusted using five in-
tuitive, anatomical parameters (§2.2). Anomalous
behaviour was shown with the rotation parame-
ter: Convergence stability was greater and elite dis-
persion was smaller compared to the other parame-
ters (§3.1.2). We could, retrospectively, claim that
rotating the Bezier curve does not describe a true
anatomical property. Instead, it might e.g., reflect
uncontrolled alignment of a subject’s cranium.

To resolve this, we demonstrated that the
rotation parameter can be ‘dropped’, together with
another parameter, by fixing them to the sample av-
erages obtained from the five-parameter fit (§3.2).
As such, this trimmed model increases the isomor-
phicity (or one-to-one mapping) between parameters
and hard palate profile. This is an effect of further
constraining the model, resulting in increased conver-
gence precision. Furthermore, trimming parameters
does not necessarily lead to a corresponding increase
in error rates. This is not to say the fixed parameters
are not important: They are ‘pre-optimized’ to the
sample-wide average, allowing the remaining param-
eters to differentiate between individual cases. More-
over, this reduction effectively deflates the search-
space the GA has to traverse, without giving up on
generality/accuracy.

Overall, our study shows that our model can be
used to identify hard palate profiles and thus may be
used to differentiate between populations using e.g.,
cluster analyses. For future studies, our formaliza-
tion can be used in automated insertion of palate trac-
ings into geometric (e.g., [1]) or finite-element (e.g.,
[12]) models of the vocal tract which we can then
use to investigate the effects on acoustics. Finally,
agent models based on these empirically grounded
representations can be used to investigate anatomical
biases in cultural transmission (e.g., [9, 4]).
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