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ABSTRACT 

 

The “fraction of locally unvoiced frames” 

measure in Praat’s Voice Report (VR) is an 

automated method of obtaining the percentage of a 

segment which is voiced, but its accuracy has been 

called into question due to values that change based 

on scrolling and zooming in Praat’s viewing window 

and don’t always match manual voicing 

segmentation.  This study offers statistical support 

for the accuracy of VR when certain guidelines are 

followed: (1) use the object window; (2) decrease 

the time step to increase temporal resolution; and (3) 

use gender-specific pitch ranges.  The closure and 

frication portions of 277 affricates were analyzed 

using VR in this way and the results were compared 

to manual voicing segmentation using paired 

Wilcoxon tests.  The results show that there is no 

significant difference between VR and manual 

segmentation, regardless of whether only the closure 

portion, only the frication portion, or the entire 

affricate is considered. 
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1. INTRODUCTION 

The phonetic implementation of phonological 

voicing distinctions involves both durational cues 

and the vibration of the vocal folds themselves.   

Durational measures which have been studied 

include the duration of the segment itself [c.f. 11, 15, 

19, 21], of the surrounding segments [c.f. 3, 18], and 

VOT [c.f. 11, 15, 16]).  Measures of vocal fold 

vibration include the percentage or duration of vocal 

fold vibration within the segment [c.f. 1, 2, 6, 7, 8, 

10, 12, 13, 15, 19, 20, 21] and the intensity of the 

resulting periodic energy [c.f. 10, 13].  The focus of 

this paper will be the percentage of a segment which 

is voiced and automated ways of obtaining this 

measure.  There are articulatory means of obtaining 

this measure such as EGG [20], but the measure can 

also be obtained from inspection of the acoustic 

waveform and spectrogram. 

While manual segmentation of this measure 

is common [c.f. 7, 8, 12, 15], it can be time-

consuming and is easier for some segments (i.e. stop 

consonants where there is no added noise to the 

signal) than for others (i.e. fricative segments where 

there can be a great amount of aperiodic noise 

superimposed on the voiced signal).  It is thus 

desirable to have a reliable automated method of 

extracting this information in these differing 

environments. 

Praat [5] has a function called “Voice 

Report” (VR) which returns, among other things, the 

“fraction of locally unvoiced frames” in a segment.  

If this number is subtracted from 1, the result is the 

portion of the segment which has vocal fold 

vibration, ranging from 0 to 1.  This and similar 

automated methods based on the pitch contour have 

also been used [c.f. 1, 2, 6, 10, 13, 19, 21]. 

Other methods have been proposed in the 

literature (i.e. center of gravity [c.f. 2]) and have 

been reviewed in [10] for three different measures of 

validity: content-related, criterion-related, and 

construct-related.  Of the voicing measures, [10] 

found that Praat’s Voice Report (VR) and the 

intensity-based measurements had the closest 

correlation to trained perceptual judgments of 

voicing in pre-palatal fricatives taken from data on 

Argentine Spanish.  The study also found that 

Praat’s default pitch settings (75-600 Hz [5]) could 

lead to chance high-frequency periodicity being 

interpreted as voicing.  This was remedied by 

lowering the pitch ceiling to 300 Hz.  However, the 

tokens were not manually segmented for voicing 

duration and so the VR measure’s accuracy as a 

gradient measure could not be tested.  [14] called 

into question whether the “Fraction of locally 

unvoiced frames” is a reliable measure, since, as the 

algorithm’s creator points out in [4], the values 

change based on zooming and scrolling in the 

viewing window.  [14] also pointed out that the 

values obtained from VR varied from manual 

segmentation.  However, the accuracy of VR could 

not be statistically measured in [14] as the purpose 

of the article was to demonstrate several voicing 

measures using only a small sample of six tokens. 

2. MOTIVATION FOR                                     

THE CURRENT STUDY 

To the author’s knowledge, an explanation of and 

way of fixing the scrolling problem and a direct 

statistical comparison of VR against manual 



marking of voicing of segments has not been 

performed, which could answer questions regarding 

the reliability of the algorithm. 

2.1 An explanation of the zooming/scrolling problem 

The changing values of the VR when 

scrolling/zooming in Praat’s viewing window and 

their deviation from manually segmented voicing 

percentages can be accounted for by the default time 

step used in the viewing window, the length of the 

analysis window, and the duration of the segment 

being analyzed.  If left at default settings, the cross-

correlated pitch algorithm in the viewing window in 

Praat uses a time step of 0.25/PitchFloor seconds 

and an analysis window equal to one longest pitch 

period [5].  While this makes sense for the viewing 

window (a decreased timestep would cause lag when 

scrolling or zooming), a shorter time step may be 

beneficial in certain circumstances.   

Consider a 20ms sound analyzed in the 

viewing window.  With the pitch floor at the default 

75 Hz, the time step will be 3.33ms and the analysis 

window will be 13.33ms long.  For the 20ms 

segment, the maximum number of frames to analyze 

will be 6, and most likely will be 5 since the chance 

is high that the first frame of analysis within the 

segment will not be at the very beginning of the 

segment (the position of the frames being 

determined by the start point of the viewing window, 

the length of the analysis window, and the time 

step).   

Additionally, the number of frames 

determines the resolution of the measurement: for n 

frames there will be n+1 possible values.  So for this 

example, with 6 frames there are 7 possible values: 

0%, 16.7%, 33.3%, 50%, 66.7%, 83.3%, and 100%.  

If the viewing window is shifted such that only 5 

frames of analysis fall within the segment, there are 

6 possible values: 0%, 20%, 40%, 60%, 80% and 

100%.  If you analyze and re-analyze the same 

sound after scrolling left and right and zooming in 

and out, you will get a set of 11 different possible 

values from the combination of these sets (0%, 

16.7%, 20%, 33.3%, 40%, 50%, 60%, 66.7%, 80%, 

83.3%, 100%) which are not equally spaced.  If the 

manual segmentation of voicing (a truly continuous 

variable) shows that exactly 27.2% of the segment is 

voiced, it is impossible for the algorithm to return 

this value, and it will return inconsistent values 

surrounding this number based on where the center 

points of the frames fall due to scrolling and 

zooming.  This situation becomes worse as segment 

duration decreases and better as segment duration 

increases. 

This situation can be remedied, however, by using 

the object window instead of the viewing window.  

From the object window, the “To Pitch (cc)…” 

command allows the user to control the time step.  

Reducing the time step and running the “To Pitch 

(cc)…” command on the entire sound file requires 

more computing time, but may yield more accurate 

results.  With a time step of 0.001 s, the 20ms sound 

described earlier would have 20 frames of analysis 

and 21 possible values, greatly increasing its 

resolution and potential accuracy when compared to 

manual segmentation.  [22] show that gender-

specific pitch ranges of 70-250 for males and 100-

300 for females yield results statistically equivalent 

to speaker-specific pitch ranges.  By using these 

pitch ranges, the problem of chance high-frequency 

periodicity described in [10] is avoided due to 

lowered pitch ceilings and the analysis window 

length determined by the pitch floor is set such that 

it will yield better results for both genders. 

2.2 Hypothesis 

When temporal resolution is increased by decreasing 

the time step of the cross-correlated pitch object to 

0.001 seconds, gender-specific pitch ranges of 70-

250 (males) and 100-300 (females) are used, and a 

whole sound file is processed from the object 

window, Praat’s Voice Report will return voicing 

percentages which are statistically equivalent to 

manual segmentation. 

3. METHODOLOGY 

To answer this question, recordings of unscripted 

Central Catlan in the Glissando corpus [9] were 

used.  According to [9], “the Sony Vegas program 

running on a PC with a RME Hammerfall HDSP 

9652 soundcard, and a Yamaha 02R96 mixer with 

ADAT MY16AT cards, were used for recordings, at 

a sampling frequency of 48 KHz” using a AKG C 

414 B-ULS directional microphone. 

3.1 Segmentation 

Affricates serve as an ideal candidate to test the VR 

algorithm under several different circumstances, as 

they have a stop portion (with little to no aperiodic 

energy) and a frication portion (with much more 

aperiodic energy) which can be analyzed separately 

and together.  Furthermore, only intervocalic 

segments were used, as the borders between the 

preceding and following segments can be more 

accurately determined in this environment, and 

Catalan affricates enter into a more complex 



allophony with fricatives in other environments [1].  

In all, 277 intervocalic prepalatal affricates (193 /ʤ/ 

and 84 /ʧ/) were manually segmented in Praat. 

 

 

The segmentation criteria were as follows: (1) the 

beginning of affricate closure was marked when 

there was a large drop in intensity and the second 

formant in the preceding vowel ceased; (2) the 

border between closure and frication was marked 

based on the beginning of a burst (if present) and the 

beginning of uninterrupted aperiodic energy in the 

waveform if no burst was present; (3) the boundary 

between the frication portion and the following 

vowel was marked at the cessation of uninterrupted 

aperiodic energy; (4) if there was periodicity in the 

waveform and energy below 300 Hz in the 

spectrogram during either the closure or frication 

periods, these portions were further segmented; and 

(5) each segment was marked with “c” or “f” for 

closure and frication respectively and with a “+” or a 

“-“ for voiced or voiceless respectively.  An example 

of this segmentation is given in Figure 1. 

3.2 Praat script and voice report settings 

A Praat script written by the author created a single 

cross-correlated pitch object for each channel of 

each conversation (which were several minutes 

long).  The pitch floor was 70 for males, 100 for 

females.  The pitch ceiling was 250 for males, 300 

for females.  The time step was set to 0.001 seconds.  

The other settings (maximum number of candidates, 

silence threshold, voicing threshold, octave cost, 

octave-jump cost, and voiced/unvoiced cost) were 

left at the default values recommended in the Praat 

manual [5].  The script then created a PointProcess 

object for each Pitch object and obtained the 

“Fraction of locally unvoiced frames” from the VR 

for the closure portion, frication portion, and entire  

affricate for each token and subtracted from 1 to 

obtain a percent voiced measure.  Additionally, the 

script computed the percentage of the closure,  

 

 

frication and affricate of each token which was 

manually marked as voiced. 

3.3 Statistical analysis 

The three VR measures (closure, frication, whole 

affricate) were compared with the corresponding 

manually segmented measures via paired Wilcoxon 

tests in R [17], and the probability density functions 

of the difference between manual segmentation and 

VR were plotted for each of the three measures. 

4. RESULTS AND DISCUSSION 

Table 1 gives the major distributional characteristics 

of VR, manual segmentation, their difference, and 

significance tests.  Figure 2 shows probability 

density functions for the difference between Manual 

and VR for each segment type. 

 
Table 1: Distribution of voicing measures and  

paired Wilcoxon tests 

 

Percent Voiced Closure Frication Affricate 

VR 

mean .62 .28 .48 

s.d. .30 .34 .30 

median .63 .13 .38 

Manual 

mean .64 .31 .49 

s.d. .32 .37 .32 

median .61 .14 .40 

Manual –

VR 

mean .02 .02 .02 

s.d. .18 .15 .12 

median 0 0 0 

Paired 

Wilcoxon 

V 13037 12787 16110 

p .42 .25 .13 

 

Figure 1: Example of manual segmentation 



As can be seen in Table 1, under all three 

segmentations (closure, frication, whole affricate), 

the mean difference was .02 and the median 

difference was zero.  The reason for the mean being 

slightly higher than the median is evident in the 

probability density functions in Figure 2: there are a 

few strong outliers on the positive side, while there 

are not strong outliers on the negative side.  The 

median values of zero in combination with the large 

peaks at zero in each of the probability density 

functions show that the majority of tokens are not 

different under VR and manual segmentation, and  

 

further shows that VR does not have an inherent bias  

on either the positive or negative side.  The paired 

Wiclxon tests (also given in Table 1) show that the 

differences are not significant (closure p=.42; 

frication p=.25; affricate p=.13).  This confirms the 

hypothesis that the VR algorithm is accurate when 

the guidelines described in this paper are followed. 

The number of tokens where voicing is 

underestimated and the number where voicing is 

overestimated are about equal, but in this dataset the 

tokens where voicing was underestimated had a 

greater absolute difference from the manual 

segmentation than the tokens where voicing was 

overestimated.  It is possible that alterations to the 

other settings in the “To Pitch (cc)…” function 

(specifically the voicing threshold) could reduce the 

deviance of these outliers.  Regardless, the results of 

this study are strong evidence that, in spite of the 

occasional outlier, a properly used VR is statistically 

equivalent to manual voicing segmentation. 

5. CONCLUSION 

In this study it has been shown that the changing VR 

values observed when scrolling/zooming in Praat’s 

viewing window [14] can mostly be attributed to the 

low temporal resolution caused by the high default 

time step in the viewing window.  It was shown that 

creating Pitch and PointProcess objects from the 

object window with a time step of 0.001 seconds and 

following [22] in the setting of gender-specific pitch 

settings at 70-250 (males) and 100-300 (females) 

yields comparable results to manual segmentation of 

voicing by increasing temporal resolution, avoiding 

the chance high-frequency periodicity described in 

[10], and guaranteeing appropriate analysis window 

lengths. 

This study contributes to further research by 

offering guidelines for the use of VR and confirming 

that these guidelines result in automated 

measurements which are statistically equivalent to 

manual segmentation. 

 

It should be noted that though the problem of 

temporal resolution is lessened by decreasing the 

time step, resolution still varies with segment length, 

and this cannot be fixed.   

While VR reliably answers questions related 

to the amount of a segment that is voiced above the 

voicing threshold, it does not give information about 

the gradient strength of voicing.  Further research 

should focus on ways of bringing these various 

measures together to give a more complete view of 

voicing phenomena. 
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