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ABSTRACT 

 

Purcell, 1979 presented data on the perception of 

Serbo-Croatian word tone by native speakers.  The 

present paper develops a logistic regression model of 

the perception of Serbo-Croatian word tone using 

Purcell’s 1979 data.  Two models are developed:  an 

overall model and a two-part, split model.  Model fits 

are calculated and plotted.  The two-part model fits the 

perceptual data better.  Model coefficients are 

interpreted in terms of the odds of perceptual judgments  

at varying points of time. 

 

Keywords: Serbo-Croatian, Perception, Tone, Logistic, 

Model. 

1. INTRODUCTION 

Purcell [2] presented the results of a test of the 

perception of Serbo-Croatian word-tone.  Synthetic 

stimuli that differed in the relative location of the peak 

fundamental frequency within a two-syllable synthetic 

word were judged by native speakers as either a rising 

or a falling tone.  The author presented his results of the 

perceptual test as a plot of the binomial distribution of 

the native speakers’ judgments 

 

     Figure 1: F0 Patterns on first Syllable of 

synthesized test words. 

 
Figure 2 presents a plot of the native speakers’ 

judgments for the synthetic stimuli. 

 

     Figure 2: Tone judgments for varying pitch peak 

locations. 

 
 

The present paper develops a logistic regression model 

of the results from Purcell’s [2] paper.  The logistic 

regression model can be interpreted in a much more 

natural way -- the odds of a rising tone judgment 

increase as the peak fundamental frequency occurs later 

within the syllable.  A single, overall logistic model, as 

well as a two-part logistic model are presented.  The 

models presented here predict the judgments of rising 

word tone.  That was an arbitrary choice.  The models 

could have just as easily predicted falling word tone 

judgments. 

 

2. OVERALL MODEL 

Logistic regression transforms a continuous predictor 

using the logit function,  see Hilbe, [1].  It is well suited 

for using a continuous predictor against a dichotomous 

criterion, such as Purcell’s data on the perception of 

Serb-Croatian tone.  Using R’s GLM algorithm, (binary 

family), Purcell’s subjects’ rising tone judgments were 

regressed on a single continuous predictor – pitch peak 

location. 

 

 



Table 1 shows the results from that regression.  Figure 

3 displays the fit of the overall model against the rising 

tone judgments from Figure 2. 

 

     Figure 3: Plot of the fit of the overall model (Rising 

~ Peak Location) against the rising tone judgments of 

Figure 2. 

 

 
 

From Table 1 it can be seen that peak location is a 

significant predictor of the subjects’ rising tone 

judgments at the >.0001 level.  This is reflected in the 

fact that the 95% confidence interval does not include 

zero within its range.  The residual deviance shows a 

sizeable drop from the null deviance.  Note the AIC 

value of 138.62.  (A smaller AIC indicates, other things 

being equal, a better model.) 

With logistic regression, one can exponentiate the 

coefficient for a continuous predictor to get the odds 

per-unit-change of that predictor; see Hilbe [1].  To 

exponentiate a number,  e is raised to the power of that 

number.  Since we originally transformed the predictor 

with the logit function, We can get back to the original 

scale of the predictor by exponentiating it.  So, 

exp(0.027019) = 1.027387.  For each additional 

millisecond of pitch peak location, the odds of a rising 

tone judgment increase by slightly more than one.  This 

is termed the overall model because all of the rising 

tone judgments are utilized in calculating the model. 

 

3. TWO-PART MODEL 

A close examination of Figure 3 shows that the fitted 

curve over-shoots the actual data in the vicinity of 100 

to 150 ms.   The fitted curve then under-shoots the final 

four data points in the vicinity of 170 to 200 ms.  It can 

also be seen that the data points prior to roughly 130 ms 

are roughly spread around a slightly rising line.  

Similarly the data points following 130 ms rise steeply 

and top out near 200 ms.  The 130 ms data point in 

Figure 2 seems to be a transition point.  Perhaps we 

would get a better model of the perceptual data if we 

split the data into two separate sets: one for the 

judgments up to and including 130 ms, and the second 

from 130 ms on. 

 

Separate logistic regressions were run for judgments up 

to and including 130 ms (Table 2) and for judgments 

from 130 ms onwards (Table 3). 

 

As shown in Table 2, the model for the split first part is 

weakly significant at the 0.1 level.  This is accompanied 

by the fact that the residual deviance does not represent 

such a large decrease from the null deviance.  Also the 

fact that zero is within the bounds of the 95% 

confidence interval for peak location, shows that that 

predictor is not significant at the .05 level. The 

exponentiated coefficient is 1.006618, indicating that 

the odds for a rising tone judgment increase by very 

slightly more than one for each millisecond increase in 

the location of the peak fundamental frequency, within 

the first part of the syllable. 

 

As shown in Table 3, the model for the second part is 

highly significant with p >.0001. Here there is a greater 

decrease in the residual deviance as compared to the 

null deviance.  Also zero is not within the bounds of the 

95% confidence interval.  The exponentiated coefficient 

is 1.072828, indicating that the odds for a rising tone 

judgment increase by more than one for each additional 

millisecond in the location of the peak fundamental 

frequency. 

 

Figure 4 presents the combined plots for the two-part 

model. 

 

     Figure 4: Plot of the fit of the two-part model 

(Rising ~ Peak Location) against the rising tone 

judgments of Figure 2. 

 

 
 

As can be seen in Figure 4, the two-part model fits the 

rising tone judgment data better than the single-part 

overall model.   

 



Table 4 presents summary statistics for the three 

models. Note the lower AIC scores for each of the two-

part models. 

 

4. SUMMARY 

Logistic regression allows us to restate Purcell’s data on 

the perception of Serbo-Croatian word tone in a much 

more familiar fashion -- something like the odds of a 

team winning a sporting event.  With each millisecond 

increase in the location of the pitch peak, the odds of a 

rising tone judgment increase.  The odds increase more 

slowly in the first part of a syllable, but increase more 

rapidly in the last part of a syllable.  Notice that this 

pattern aligns nicely with the restriction in Serbo-

Croatian that monosyllabic words cannot have rising 

word tones.  Monosyllabic words can bear either a short 

falling or a long falling word tone. Rising word tones 

occur exclusively in polysyllabic words.  But here we 

have the reflection of that restriction in probabilistic 

terms. 
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Table 1: Results of the regression of peak location on rising judgments (overall model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Results of the regression of peak location on rising judgments (first part model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Results of the regression of peak location on rising judgments, (second part model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

frmla <- cbind(Rising, Falling) ~ Peak_Location 

Call:  fit <- glm(formula = frmla, family = binomial(), data = dfData) 

Coefficients Estimate Std. Error Z value Pr(>|z|) 

     Intercept -3.664537 0.268297 -13.66 <2e-16 

     Peak Location 0.027019 0.002018 13.39 <2e-16 

Deviance     

     Null 333.012 On 18 df   

     Residual 68.266 On 17 df   

AIC: 138.62    

Confidence Intervals 2.5% 97.5%   

     Intercept -4.20958339 -3.15652724   

     Peak Location 0.02318043 0.03110156   

     

Frmla_1_12 <- cbind(Rising, Falling) ~ Peak_Location 

Call:  fit <- glm(formula = frmla_1_12, family = binomial(), data = dfData_1_12) 

Coefficients Estimate Std. Error Z value Pr(>|z|) 

     Intercept -2.047629 0.305482 -6.703 <204e-11 

     Peak Location 0.006596 0.003510 1.879 0.0602 

Deviance     

     Null 5.3049 On 11 df   

     Residual 1.7259 On 10 df   

AIC: 48.916    

Confidence Intervals 2.5% 97.5%   

     Intercept -2.6687531257 -1.46831960   

     Peak Location -0.0002364219 0.01355441   

Frmla_12-19 <- cbind(Rising, Falling) ~ Peak_Location 

Call:  fit <- glm(formula = frmla_12_19, family = binomial(), data = dfData_11_19) 

Coefficients Estimate Std. Error Z value Pr(>|z|) 

     Intercept -10.422673 1.284344 -8.115 <4.85e-16 

     Peak Location 0.070298 0.08264 8.507 <2e-16 

Deviance     

     Null 118.1847 On 7 df   

     Residual 4.6474 On 6 df   

AIC: 35.68    

Confidence Intervals 2.5% 97.5%   

     Intercept -13.07251086 -8.02106596   

     Peak Location 0.05492411 0.08742691   



 

Table 4: Summary of key statistics from the three models 

 

 

Model Coefficient Exp(Coefficient) AIC Z Value Pr(>|z|) 

Overall 0.027019 1.027387 138.62 13.39 <2e-16 

Split – First Part 0.006596 1.006618 48.92 1.879 0.0602 

Split – Second Part 0.070298 1.072828 35.68 8.507 <2e-16 


