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ABSTRACT 

The suitability of vowel cepstral spectra for 

forensic voice comparison is explored within a 

likelihood ratio-based framework. Non-

contemporaneous landline telephone recordings of 

297 male Japanese speakers are compared using 

only two replicates each of their five vowels. 14 

cepstrally-mean-subtracted LPC CCs from dc to 5 

kHz are used as features. Multivariate likelihood 

ratios estimated for the 297 target- and 43956 non-

target trials give good results: an equal error rate of 

0.28% and log likelihood ratio cost of 0.013. It is 

concluded that the approach has some merit. 

Keywords: forensic voice comparison, likelihood 

ratio, vowel spectra, cepstrum 

1. INTRODUCTION 

In forensic voice comparison (FVC) the expert 

typically compares suspect and offender speech 

samples to help the trier of fact decide whether the 

suspect said the incriminating speech. The 

evidence in FVC is the ensemble of observed 

differences between the suspect and offender 

speech samples, and the crucial concept is its 

strength, quantified as a likelihood ratio (LR) [7]. 

This is the ratio of the probabilities of observing 

the evidence under the competing hypotheses – 

usually the prosecution hypothesis that the suspect 

said both speech samples, and the defence 

hypothesis that they were said by different 

speakers. The LR is crucial not only because the 

usefulness of an expert is considerably restricted if 

they are unable to say how likely the evidence is 

under both prosecution and defence hypotheses. 

The LR has also been shown to be a powerful 

function in the essential testing, as is done in this 

paper, of the discriminability of various forensic 

media, e.g DNA [3] and speech [5, 8]. 

The strength of the evidence/magnitude of the 

LR in a particular case depends on many factors, 

but ceteris paribus on the features used to compare 

the samples. Cepstral coefficients (CCs) have long 

been the feature of choice in automatic speaker and 

speech recognition, and automatic forensic speaker 

recognition [5], where they are applied globally. 

The general aim of this paper is to advance current 

investigations as to how automatic speaker 

recognition methods can be used to enhance 

traditional FVC; specifically it is to explore the 

potential of CCs when used locally, to characterise 

segmental phones such as vowels.  

Cepstral coefficients represent a way of 

parametrising a spectrum with a greater degree of 

smoothing than with linear prediction: a degree of 

smoothing which generally exhibits ‘… strong 

immunity to non-information variabilities in the 

speech spectrum’ [9], and thus turns out to be 

optimum for speech and speaker recognition. The 

main forensic advantage of the cepstrum is its 

power. For example, it has been shown capable, 

albeit with a small sample of 60 speakers, of 

delivering much stronger evidence, i.e. greater 

magnitude LRs, for the same data than formant 

centre-frequencies alone [12]. This is probably 

simply because, in capturing the whole of the 

spectral envelope, more potentially speaker-

specific information is able to be exploited. For 

example, the cepstral-spectral envelope of a vowel 

can be expected to reflect not only the dimensions 

of the tract that produced it (in its F-pattern centre-

frequencies - to the extent they are resolved), but 

also aspects of the phonatory activity of the source 

(in its spectral slope). A second advantage over 

formants is that the cepstrum is much easier to 

extract. Formants, including forensically important 

sub-glottal and nasal resonances, can be 

notoriously difficult to identify and extract in the 

often degraded speech encountered in real case-

work. The major drawback of the cepstrum is of 

course its sensitivity to transmission effects 

(compared, say, with vocalic F2); another is its 

general lack of interpretability in terms of speech 

production. 
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2. PROCEDURE 

2.1.1. Database, speakers, corpus 

The database used in this experiment was collected 

some time ago by the Japanese National Research 

Institute of Police Science (NRIPS) for forensic 

speaker recognition tests, and allows testing with a 

reasonably large number of speakers. It comprises 

recordings, digitized at 10 kHz with 12 bit 

quantization, of 297 adult male Japanese from 11 

different prefectures around Japan. This means 

nearly 300 same-speaker comparisons and 44,000 

different-speaker comparisons can be made. All 

speakers were members of the Japanese police 

force and were uncontrolled for age, which ranged 

from ca. 20 to 50 years. The recordings were made 

centrally, on the same NRIPS equipment, of 

incoming landline telephone calls. Most 

importantly for realistic forensic testing, two non-

contemporaneous recordings were made for each 

speaker, separated by three to four months. Each 

recording for each speaker contains about 70-80 

seconds net speech comprising single- and many-

word utterances, and a set of five Japanese vowels 

read out from hiraganaい え あ お う representing 

the five Standard Japanese vowel phonemes 

//. It is these vowel readings that were 

used in the experiment. In each recording all the 

data was repeated, giving just two replicates of 

each vowel per non-contemporaneous recording 

session. Click here for examples from the first part 

of two speakers’ recordings (vowels, numbers). 

The CCs used in this experiment had already 

been extracted from the speakers’ vowels in 

Khodai-joopari’s forensically motivated Ph. D 

thesis [6]. In order to extract representative CCs 

for the vowels’ spectra, Khodai-joopari first 

identified a given vowel token’s best continuous 

interval (BCI). This contained all the speech wave-

form within 10% of the maximum amplitude of the 

vowel, and, by visual examination, no extraneous 

material (e.g. non-speech transients). From the 14
th
 

order autocorrelation LP of the vowel’s BCI, four 

consecutive single 25.6 ms. frames were then 

identified such that a single frame could be chosen 

from them which simultaneously (1) best 

represented the whole of the BCI, and (2) 

minimized the variance across a speaker’s four 

vowel tokens. The CCs from this frame were then 

used to characterise the vowel token in question. In 

this way the within-speaker spectral variability was 

claimed to be minimised. This final part of the 

procedure was of course forensically unrealistic, 

because it rendered the two non-contemporaneous 

recordings for each speaker as similar as possible. 

In reality, one does not of course know whether 

suspect and offender speech samples are from the 

same speaker or not, and one can imagine what 

defence counsel would have to say if it transpired 

that the forensic voice comparison expert had tried 

to make them as similar as possible!  Nevertheless, 

this minimization of same-speaker variance means 

that we can expect the discrimination of same-

speaker speech samples to probably be optimal, 

with consequent degradation in different-speaker 

comparisons.  

2.1.2. Further processing 

For this experiment, the CCs extracted by Khodai-

joopari were further processed in the following 

way. In order to at least partially compensate for 

the inevitable spectral distortion caused by all 

aspects of the ‘phone transmission, a set of 

cepstrally-mean subtracted CCs (cms-CCs) was 

obtained by subtracting each speaker’s CCs for a 

given vowel token from the mean cepstral vector 

obtained from their whole repeat. This process is 

illustrated in figure 1, with data from speaker 52’s 

[i] vowels. A Praat wideband spectrogram of his 

first [i] token, with superimposed formant centre-

frequencies (Burg, 4 formants below 5 kHz), 

shows the typical diffuse-acute F-pattern for [i]. F1 

is at ca. 300 Hz; F2 at just over 2 kHz; a weak F3 

appears to meander around 3.3 kHz, and F4 is at 

about 3.8 kHz. Khodai-joopari’s cepstral spectra 

for speaker 52’s non-contemporaneous [i] means 

(shown with solid red lines in the bottom left 

panel) correspond fairly well with the 

spectrographic F-pattern. Some of these spectral 

characteristics will be due to the transmission 

effect, and these will be contained in the speaker’s 

mean cepstral spectra over their whole recordings 

shown in the dotted blue lines in the bottom left 

panel [4]. The most obvious feature is of course 

the upper passband cutting-in at just below 4 KHz. 

In subtracting the mean cepstrum from the [i] CCs 

one hopes at least partially to deconvolve the 

original signal from the channel [4]: the result is 

shown in the cms-CC spectra for the two non-

contemporaneous means in the bottom right panel. 

Some changes in the vowels’ overall spectral shape 

can be seen, notably in the increased spectral 

slope, which now corresponds better to the the 

auditorily slightly tense phonation type of the 
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tokens. The [i] spectra difference shown in this 

comparison was ca. 390 times more likely with 

same rather than different speaker provenance 

(log10LR = 2.59). 

Figure 1: Illustration of cepstral mean subtraction in 

[i]. Top: wideband spectrogram of [i] (axes = csec., 

Hz). Bottom left panel: red line = 12th order LPC 

cepstral spectrum of phone-recorded [i]; dotted blue 

line = speaker’s mean cepstral spectrum. Right panel: 

cepstrally mean subtracted spectrum for [i]. Spectral 

axes = Hz, arbitrary amplitude units. 

 

  

LRs for separate vowels were then estimated 

from the cms-CCs with the generative multivariate 

kernel density LR formula developed at Edinburgh 

University’s Joseph Bell Centre for Forensic 

Statistics and Legal Reasoning [1]. This formula 

estimates multivariate LRs (MVLRs) taking into 

account any correlation between variables within a 

segment. (Although the variables in this case are 

CCs, which are orthogonal by definition, there is 

always the chance that correlation will arise by 

virtue of the spectral shape of the actual sound 

being modeled, as was shown for [] in [12]). With 

two non-contemporaneous recordings, two 

independent non-target trials are possible. Only 

one was tested, thus giving in all 43,956 non-target 

trials. LRs were also estimated with a Gaussian 

mixture model approach [8], but this, surprisingly, 

gave markedly poorer performance and is not 

discussed further.  

Although the MVLR takes into account any 

correlation between features within a segment, any 

between-segment correlation must be also be 

handled [11]. This was done by logistic-regressive 

fusion [10], another common automatic FVR 

procedure, which combines the LRs from the 

different vowels according to the correlation 

between the vowels’ LRs. The output is a set of 

calibrated LRs for all five vowels combined. The 

performance of the system was then quantified 

with its equal error rate (EER), and calibrated log 

likelihood-ratio cost Cllr [2]. Currently the 

evaluation metric of choice for the performance of 

LR-based detection systems, Cllr is a simple scalar 

which severely penalizes highly counterfactual 

LRs. Various subsets of the 14 cms-CCs were 

tested and it was found that optimum Cllr and EER 

were obtained with all 14. 

3. RESULTS 

Figure 2: Tippett plot for multivariate LRs derived 

from comparisons using 14 cms LPC CCs from all 

five vowels. X axis = log10LR greater than …; y axis 

= cumulative proportion of non-target trials ~ 1- 

cum.prop. target-trials. Solid black/red lines = cms-

CCs; dotted green/blue lines = raw CCs. Inset = EER 

detail. 

  

Figure 2 shows, with a conventional Tippett plot, 

the results for the MVLR-based discrimination 

using all five vowels (to show the beneficial effect 

of cepstral mean subtraction, results using the 14 

raw CCs have also been included and plotted with 

dotted lines). Rising towards the right are 

cumulative Log10LR curves for comparisons 

between samples from the same speaker; curves 

for different-speaker comparisons rise towards the 
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left. The Cllr, at 0.013, is encouragingly low 

(values below unity indicate that the system is 

delivering some information; values below 0.1 are 

to be hoped for). The results show that vocalic 

segmental cms-CCs can be used within a 

likelihood-ratio based approach to discriminate 

rather well between same-speaker and different-

speaker speech samples: the EER of ca. 0.28% for 

the cms-CCs reflects the fact that all of the 297 

same-speaker comparisons were correctly 

evaluated with a LR that would be more likely had 

they come from same speakers; and out of the 

43956 different-speaker comparisons, just 173 had 

counterfactual LRs. Of these, however, 14 had 

Log10LRs bigger than 1000, and one comparison 

was over 100000 times more likely given same-

speaker provenance (this is the price you pay for 

higher-order CCs: the magnitude of the worst 

different-speaker LRs drops considerably with 

lower-order analyses). It can be seen that the raw 

CCs also perform well, but with EER and Cllr not 

quite as good as the cms-CCs. Clearly, the MVLR 

likes this kind of data. 

4. SUMMARY & DISCUSSION 

This paper has used a large database of speakers to 

show how same-speaker vowel samples can be 

well discriminated under forensically realistic 

conditions of non-contemporaneity and telephone 

recording from different speakers’ vowels using 

likelihood ratios derived from their segmental 

cepstrum. (Lest it be thought that isolated vowels 

are totally unrealistic, the author has more than 

once had to deal with forensic speech samples 

containing them when speakers spell out names). 

The good results undoubtedly reflect the 

favourable conditions of the comparison: 

considerable care was taken to ensure a priori 

minimal within-speaker variation; and isolated 

vowels, with their spectra unperturbed by 

consonantal effects, are also highly comparable. 

(There is minimal contribution to the good results 

from the Japan-wide sampling: vowels from 

different dialect areas do not differ, other than in 

the expected F2 difference for /high back vowels/ 

correlating with the well-known East-West 

difference in rounding [13].) The experiment has 

thus shown that the segmental cepstrum as a 

forensic tool deserves some further study – perhaps 

with non-vocalic sonorants; definitely with mobile 

phones. And once again the power of the LR is 

clear as forensic discriminant function.  
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