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ABSTRACT 

A computational framework for quantitative 

studies of sound acquisition in a second language 

is presented. The framework supports the 

exploration of issues such as the effect of the 

amount and type of exposure to L2 categories, 

interactions between L1 and L2 sound systems as 

well as L1 attrition. The model is illustrated by 

simulating a Chinese listener’s responses to 

English vowel-consonant-vowel exemplars. The 

simulations suggest that even very small quantities 

of L2 material can lead to rapid improvements in 

recognition of L2 target consonants and that with 

balanced amounts of exposure to the two 

languages, L2 models can contribute to the 

recognition of L1 tokens. 
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1. INTRODUCTION 

The study of L2 sound perception and its 

development is largely based on qualitative 

comparisons between the L1 and the L2 sound 

systems to decide whether two sounds are similar, 

different or equal [5] using criteria such as 

listeners’ identifications, phonetic symbols and, in 

some cases, acoustic distances. Nevertheless, some 

attempts have been carried out to quantify the 

degree of perceived similarity between L1 and L2 

sounds, for instance by means of listeners’ 

goodness ratings [1, 2, 9] or multi-dimensional 

scaling techniques [9]. 

Recently, L2 sound acquisition has been 

tackled using statistical and computational 

modelling techniques. Statistical pattern 

recognition models have been used to compare the 

similarity between Chinese and English vowels 

[10]. Automatic speech recognition and 

information theory techniques were used in [7] to 

measure the distance between Chinese and English 

consonants. Machine learning and computational 

linguistic techniques have been employed to 

simulate native Spanish learners’ Dutch vowel 

space development [4]. These studies suggest that 

quantitative methods can complement theoretical 

models by improving the precision of their 

predictions.  

The purpose of the current study is to extend 

the domain of quantitative approaches to issues 

which have received little attention from modellers, 

in particular, issues related to the quantity of input, 

which has been estimated subjectively because of 

practical or ethical limitations [6]. These include (i) 

the degree of L2 exposure; (ii) the amount of L2 

exposure relative to the L1; (iii) the interaction 

between new data and the existing L1 sound 

system; and (iv) L1 attrition following L2 learning 

[11]. These issues are susceptible to a quantitative 

approach as they naturally involve continuous 

changes in the amount of data to which the model 

has access during its simulation of development. 

Also, by adjusting the relative balance of L1 and 

L2 data employed during learning, both adult 

second language learners and balanced bilingual 

learning can be accommodated within the same 

approach. 

This kind of quantitative approach aims to 

tackle questions such as: how little L2 exposure is 

needed to produce improvements in L2 sound 

identification, and at what point does further 

exposure result in little benefit?  How does the 

reduced quantity of data in each language due to 

exposure to two languages affect performance? 

What is the effect of merging L2 data into existing 

L1 categories for similar/near-identical sounds? At 

what ratio of L2:L1 input do we observe L1 

attrition? 

Our long term goal is to build a computational 

account of the development of L2 consonant 

acquisition which can be used to make testable 

predictions of a learner’s L2 confusions and their 

possible resolution at different stages of 

acquisition. In the current study, we describe a 

computational framework which lends itself to an 

exploration of the issues outlined above and show 

results from simulations of Chinese learners of 

English vowel-consonant-vowel (VCV) tokens.  
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2. METHODS AND MATERIALS 

2.1. Modelling framework 

The development of phonemic categories was 

simulated using Hidden Markov Models (HMM), 

which have many benefits in quantitative 

simulations. They use powerful statistical 

techniques for learning from data and have been 

optimised for speech recognition; they capture 

both spectral and temporal features of sounds; and 

they possess great flexibility in model formation 

and use, permitting an exploration of L2 material 

incorporated at the level of existing or new models. 

Continuous density HMMs were trained using the 

HTK toolkit [12] on standard speech parameters (a 

39-component vector consisting of 12 Mel-

frequency cepstral coefficients plus energy, and 

their first and second temporal derivatives) 

computed every 10 ms. Individual vowels and 

consonants were modelled as 3-state HMMs and 

combined during recognition into VCVs. Within 

each state, a mixture of Gaussian distributions 

represented speech observations deemed to belong 

to that state. A limit of 4 mixture components was 

determined as the best tradeoff between model 

accuracy and use of the available training data.  

2.2. Corpora 

VCV tokens used for model training and testing 

were derived from English and Chinese corpora 

collected for the Interspeech 2008 Consonant 

Challenge [3] and a recent modelling study [7] 

respectively. Each corpus contains exemplars from 

many talkers of the 24 English and Chinese 

consonants in vowel contexts based on 

combinations of the vowels /æ iː uː/. Here we 

focus on the 16 English consonants that have close 

counterparts in Chinese (English /p b t d k ɡ f s ʃ h m 

n l r j w/; Chinese /pʰ p tʰ t kʰ k f s ʃ  x m n l    j w/), 

since the same label can be used to assess ‘correct’ 

category recognition. The remaining consonants in 

each language (English /ʧ ʤ v θ ð z ʒ ŋ/; Chinese 

/tsʰ ts ʧ ʰ ʧ  ʨʰ ʨ ɕ ŋ/) were also used to allow for 

confusions among the full set of categories. 

2.3. Modelling strategies 

All simulations presented here explored a range of 

learners differing in the ratio of L1 to L2 tokens 

used in model development. Consequently, 

Chinese and English monolinguals occupy ends of 

the continuum and other points along the 

continuum represent L2 learners or bilinguals.  

To model the effect of absolute exposure to L2 

material during acquisition, differing numbers of 

VCV tokens (25, 50 and 100 exemplars per 

consonant) were employed during training. These 

quantities represent the maximum number of 

tokens available to learners, which occurs when 

the ratio of L1:L2 tokens is 1:1. At other points 

along the continuum, the number of L2 tokens is 

smaller. For example, at a ratio of 5:1, only 5 

examples of each VCV in the L2 are used.  

We model the situation where an adult learner 

with a fully developed L1 sound system is 

involved in the process of L2 sound acquisition. 

We also model the alternative situation where a 

learner is acquiring both L1 and L2 at the same 

time. Here, the total quantity of tokens available at 

each point along the L1:L2 ratio continuum is  

fixed e.g. assuming 25 exemplars per VCV are 

available, 5 L2 tokens now corresponds to a ratio 

of 4:1 as opposed to 5:1 in the former case. 

The issue of how L2 material interacts with the 

existing L1 sound system is investigated here by 

comparing two strategies: direct blending of L2 

data into L1 categories, versus development of 

separate L2 category models. The first approach is 

similar to [4], where the L2 speech material (Dutch) 

was mixed with L1 (Spanish) data during model 

training, to simulate an advanced learner’s L2 

exposure. The second approach maintains separate 

models for L1 and L2 categories, even for sounds 

that are close counterparts. Finally, to explore any 

effects of L1 attrition, models trained with L1 and 

L2 data are tested using L1 data. 

3. RESULTS 

3.1. Effect of degree of L2 exposure 

In this section the effect of blending L2 data into 

existing L1 models is analysed as a function of the 

quantity of L2 exposure, the ratio of L1:L2 

experience, and the additive or fixed overall 

amount of training tokens. In all cases, the quantity 

reported is the percentage of L2 categories 

correctly identified for the 16 consonants having a 

close counterpart in the L1. 

Figure 1 (left) depicts category identification 

scores for L2 (English) test tokens in the situation 

where L2 tokens are added to a fixed L1 training 

set. The leftmost part of the x-axis corresponds to a 

monolingual Chinese model while the rightmost 

part represents a monolingual English listener. As 

expected, identification scores are low for the 

Chinese monolingual model for English test 
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tokens, though well above chance. As English 

tokens are added to the training set, performance 

initially increases rapidly, reaching a slower 

asymptotic growth towards native-like levels. 

Increasing the absolute quantity of exposure from 

25 to 50 to 100 tokens per consonant leads to 

increased scores. The tendency to asymptote 

occurs at an earlier L1:L2 ratio for larger numbers 

of training tokens, suggesting that the absolute 

amount of exposure as opposed to the relative 

L1/L2 exposure is most important.  

Figure 1 (right) shows equivalent results for the 

situation where the overall amount of L1+L2 data 

is fixed. Here, the pattern of improvement is more 

gradual compared to the case where the L2 

material is additional to a fixed L1 training set. 

Further, the L1:L2 ratio at which the slower 

asymptote is reached is similar irrespective of the 

absolute quantity of training data. 

Figure 1: Category identification scores for added L2 

tokens (left) and fixed overall L1+L2 token quantity 

(right).  

 

An intriguing feature is the progressive 

reduction in scores on English tokens that occurs 

in spite of the fact that English is more dominant in 

the model’s exposure. This reduction may be due 

to the fact that the model is exposed to fewer 

tokens overall for the monolingual English model 

than at the mid-point of the continuum where it 

receives equal L1/L2 exposure. This idea is 

supported by the absence of such an effect in the 

right panel, where the overall amount of training 

data is constant across the continuum. The 

reduction is visible for small amounts of training 

data (25) but disappears when more training data is 

used (100), suggesting that in cases of data 

sparsity, even L2 data is better than none at all. 

3.2. Effects of separate L2 categories 

Figure 2 (left) illustrates the consequence of 

maintaining separate L2 models rather than 

blending L1 and L2 material into a single category, 

for the case of additive L2 data (i.e. corresponding 

to the left panel of Figure 1). While the pattern is 

quite similar to the blended case, some differences 

are evident. The initial rapid rise is delayed, and 

peak scores are somewhat lower for the 

independent models. Both outcomes may be 

caused by paucity of L2 exposure when material is 

not being incorporated into existing categories. 

The other key difference is the lack of reduction in 

scores as the L1:L2 ratio approaches the 

monolingual target sound model.  

Figure 2: Scores for independent L2 models. 

 

Additional insights can be obtained by 

depicting the extent to which L1 and L2 categories 

are matching the target tokens. Figure 2 (right) 

breaks the overall identification scores (solid curve) 

into correct identifications by the English and 

Chinese models. The example shown is for the 25 

tokens case, but the others show a similar pattern. 

It is clear that once sufficient exposure to English 

tokens has been received, the new L2 models make 

a very rapid contribution to category identification, 

while the contribution of the L1 categories 

gradually declines. One interesting finding is that 

even at the mid-point of the continuum when both 

models have the same amount of training data, L2 

categories are still contributing to the recognition 

of L1 tokens, a trend which continues even long 

after overall performance has asymptoted. While 

interlanguage similarity for these consonants 

doubtless contributes, another possibility is that the 

model from one language may be more sensitive to 

features more important in that language but not in 

the other one (e.g. aspiration for Chinese and 

voicing for English). Increasing robustness via 

dual-language exposure has also been 

demonstrated in [8] which showed that Chinese 

listeners can understand Chinese accented English 

better than native English listeners. 
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3.3. Attrition 

To determine whether L2 exposure affects L1 

performance, Figure 3 plots scores for the blended 

models (left) and separate L1/L2 models (right) in 

recognising Chinese tokens. For the blended 

models, there is some evidence of attrition 

revealed by a drop in scores up to the mid-point of 

the continuum, while separated models appear 

better able to resist attrition, perhaps due to the 

lack of mixing of L1 and L2 data. 

Figure 3: Recognition of L1 tokens by blended data 

(left) and independent (right) models. 

 

4. DISCUSSION 

The current study reports on a computational 

framework for simulating some aspects of L2 

sound acquisition. The framework can be used to 

explore issues such as exposure, category 

representations and attrition in a quantitative 

manner. The tool has the potential to be used both 

to confirm (or otherwise) observations made with 

L2 learners and bilinguals, and also to discover and 

make predictions about outcomes in L2 learning. 

Among the less-expected results of the simulations 

are the suggestions that (i) even very small 

quantities of L2 material (6 or 7 tokens per 

category) can lead to rapid improvements in 

recognition of L2 target consonants; (ii) in the case 

of minimal L1 exposure (as during the early stages 

of development), an L1/L2 mixture is more 

beneficial than single-language categories; and (iii) 

even with balanced amounts of training data across 

the two languages, L2 models can contribute to the 

recognition of L1 tokens. 

The current framework is in need of extention 

and refinement in two areas. First, in the data 

blending strategy existing L1 categories are not 

adapted sequentially, as one would find in an adult 

learner, but rather retrained with mixed L1/L2 

exemplars. Second, the approach here has been 

illustrated with L1 sounds having close 

counterparts in the L2. Further work is required to 

develop a model capable of quantitative 

predictions for those L2 sounds with a more 

complex mapping to native categories. 
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