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Abstract

We apply a Bayesian belief network (BN) approach to vowel
duration modelling, whereby vowel segment duration is mod-
elled as a hybrid Bayesian network consisting of discrete and
continuous nodes, with the nodes in the network representing
linguistic factors that affect segment duration. Factor interac-
tion is modelled in a concise way by causal relationships among
the nodes in a directed acyclic (DAG) graph. New to the present
research, we model segment identity as a set of distinctive fea-
tures. The features chosen were frontness, height, length, and
roundness. In addition, the BNs were augmented with the word
class feature (content vs. function). We experimented with
different BNs, and contrasted the results of the belief network
model with those of Sums-of-Products (SoP) and classification
and regression trees (CART) models. We trained and tested
all three models on the same data. In terms of the RMS er-
ror and correlation coefficient, our BN model performs better
than CART and SoP model.

1. Introduction
Segment duration is known to be affected by a number of lin-
guistic factors such as segment identity, stress level of the sylla-
ble containing the segment, accent of the word the syllable is a
part of, identity of preceding and following segments, and posi-
tion of a target segment within a syllable, word, and utterance.
When modelling segment duration for a text-to-speech system
(TTS), large databases are used to estimate the parameters of the
duration model. Databases used for duration modelling usually
do not cover all the possible combinations of linguistic factors;
data are sparse. In addition, databases are not balanced: differ-
ent factor combinations occur with unequal frequencies. Nev-
ertheless, the probability of rare factor combinations occurance
is quite large even for a small sample of text [1]. Therefore,
durational model should generalise well to successfully predict
durations of these rare feature vectors. Since linguistic factors
affecting segment duration interact, it should also model these
factor interactions well.

Past approaches to segment duration modelling for TTS in-
clude rule-based [2], statistical (classification and regression
trees [3]), and supervised data-driven methods (the Sums-of-
Products, or SoP duration model [1],[4]). In general, CART
models predict segment duration well, though they perform
badly when data are noisy or the amount of missing data is large.
In the SoP model the problems of data imbalance, data sparsity
and factor interaction are treated satisfactorily by using general
statistical techniques. However, this requires substantial data
preprocessing, and consequently a large number of the model’s
parameters have to be estimated.
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s an alternative to the conventional techniques of data
lling, we model segment duration using probabilistic
sian belief networks (BN) [5]. Our previous work on
sian modelling of segment duration proved to be promiss-
n overcoming unbalanced data and data sparisty prob-
[6], [7]. Factor interaction is modelled in a concise way
usal relationships among the nodes in a directed acyclic
) graph. The BN model makes robust predictions in cases
ssing or incomplete data. Compared to sums-of-products
l, BN model also requires fewer parameters to be esti-
.
he structure of the paper is as follows. We give a brief
iew of Bayesian belief approach in section 2. We give
tails of applying BN approach to modelling segment du-
in section 4. We give the details of the databases used

gment duration modelling in section 3. We describe the
iments and discuss the results in section 5. We make the
usions and discuss future work in section 6.

2. Bayesian Belief Networks
using Bayesian networks for modelling segment dura-

we represent linguistic factors that affect segment duration
des in a graph. Throughout the paper we use the terms
variable, and factor interchangebaly. A Bayesian belief
rk is defined by a triple (G, Ω, P ), where G = (U, E) is
cted acyclic graph (DAG) with a node set U representing
em domain information; E is a set of edges that describes
tional dependency relations among domain variables; Ω
pace of possible instantiations of domain variables; and

is a joint probability distribution (JPD) for all of the
in the graph G. Learning the whole JPD P (U) requires

ponential number of BN parameters to be calculated. By
the so-called Markov property of BNs (each variable in
ork is independent of its non-descendants given its par-
the joint probability P (U) factorises into local condi-
probabilities for each variable in the network. The P (U)
isation is:

(U) = P (X1, X2, ..., Xn) =

nY

j=1

P (Xj |Pa(Xj)) (1)

Pa(Xj) is the set of parents of node Xj . We modelled
l segment duration as a hybrid Bayesian network; consist-
f discrete and continuous nodes. The problem domain set
a hybrid BN is divided into a set of discrete variables ∆
set of constinuous variables Γ, i.e. U = ∆∪ Γ. The vari-
U = (X1, X2, . . . , Xn) in a hybrid BN are said to have
ditional Gaussian (CG) distribution; given a particular in-
ation of discrete nodes i ∈ ∆, the continuous variables



Y = {Y1, Y2, Y3, · · · , Yk} ∈ Γ follow a multivariate Gaussian
distribution, i.e., the probability distribution function (pdf) over
the continuous nodes has the form:

P (y|i) =
1

p
(2π)ddetΣ(i)

exp{− 1
2
(y(i) − �µ(i))T Σ(i)−1(y(i) − �µ(i)) (2)

where d is the cardinality of the set Γ, y(i) = (y1, y2, · · · , yk)
are the instantiations of the continuous variables Y ∈ Γ, �µ(i)
and Σ(i) are the mean vector and covariance matrix of the mul-
tivariate Gaussian distribution given the values of the discrete
nodes i ∈ ∆; here the covariance matrix Σ(i) is assumed to be
positive definite.

3. Durational database
The databases used for this research were derived from Rhetori-
cal Systems speech data. We used three databases; one database
of General American (GA) English male speaker ’erm’; and two
databases of Received Pronunciation (RP) English speakers, a
female database ’lja’ and a male database ’rjs’. Each database
was divided into train (90%) and test (10%) sets. ’rjs’ database
of 98, 763 vowels was divided into 88, 997-segment train and
9, 766-segment test sets. ’lja’ database of 39, 224 vowels was
divided into 35, 348-segment train and 3, 876-segment test sets.
’erm’ database of 63, 188 vowels was divided into 57, 104-
segment train and 6, 084-segment test sets. Each segment in the
data was labeled with segment, syllable, word, and utterance
level phonetic and phonological information.

4. Bayesian analysis of vowel duration
4.1. Defining linguistic factors of durational BN

In the case of durational BN, the set Γ consists of just one scalar
node D that corresponds to the duration value of a vowel seg-
ment. The set ∆ varies according to what causal factors are

Factor # Levels Example
Wpost 3 initial
S 2 unstressed
Utt 3 final
Cpost 10 unvoiced fricative
Front 3 back
Height 3 high
Length 4 diphtong
Round 2 round
WdCl 2 function

Table 1: Linguistic factors selected for the Bayesian modelling
of vowel duration.

selected for analyis. For the present analysis we selected 9 lin-
guistic causal factors that affect vowel duration shown in Table
1. Within word position factor Wpost has 3 possible values
corresponding to initial, medial, and final position of a syllable
with a target vowel in a word. Stress factor S can take 2 val-
ues; stressed and unstressed. Within utterance position factor
Utt describes phrasal position of a word with a target vowel
taking on 3 values; initial, medial, and final. The identity of the
following segment factor Cpost takes on 10 values. When the
following segment is a consonant, the values of Cpost node are
based on voicing and manner of production features for con-
sonant; voiceless stops, voiceless affricates, liquids, voiceless
fricatives, nasals, voiced stops, voiced affricates, and voiced
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e also introduced a word class factor represented by a bi-
discrete node WdCl, describing whether a word with a
vowel is content (open class) or function (closed class).
class factor is meant to implicitly represent word fre-

y information. From the studies of the effect of word
ency on duration of content [8] and function [9] words,
nown that the duration of a more frequent word tends to
orter than the one of a less frequent word. Therefore, we
ed that word frequency should have an effect on word du-
and consequently on a word’s segment (vowel) durations.
future, we plan to use continuous word frequency factor

ly.

Modelling vowel identity

odelled vowel segment identity as a combination of four
s corresponding to the following phonological (distinc-
features. The frontness of a target vowel is represented
e factor Front that can have 3 values; front, medial, and
The height of a vowel segment is represented by the fac-
eight that can have 3 values; high, medial, and low. The
Length can take on 4 values; short, long, diphtong, and
The factor Round can have 2 values, rounded and un-

ed.

Learning durational BN

rocess of BN learning consists of BN structure learning
N parameter learning. Once the BN structure is known,
rameters of the BN, i.e. the parameters of the conditional
bility distributions (CPDs) of the nodes are estimated. The
parameters of the discrete nodes are just the entries in
onditional Probability Table (CPT). The parameters of the
uous nodes are the mean vector (�µ and covariance ma-
) of the Gaussian pdf. First, we performed BN structure
ng. We used the K2 structure learning algorithm (see [10]
tails). In brief, the K2 algorithm uses a greedy heuris-
proach whereby, given the fixed ordering of the nodes
parents preceding children), a parent node is succesively
to a parent set of each node in such a way that maxi-
improves the joint probability of a network structure and
Since there are no network structure learning algorithms

oped for hybrid BNs, we applied the K2 algorithm to the
ional data that were uniformly discretised. We chose sev-
vels of discretisation ranging from 2 to 7 bins. We applied

2 algorithm to 3 discretised data sets; ’erm’, ’rjs’, and ’lja’.
earning resulted in 7 different network structures; the BNs
ed in the connections between the causal nodes and the
ional node D. After removing some linguistically superfi-
onnections (between the causal nodes) learned by the K2
ithm, we then estimated the nodes CPDs. An example BN

a(D) = {Cpost, F ront, Length, Round} is shown in
e 1. The number of BN parameters as well as the linguistic
connected to the D node for 7 BNs learned are shown in
2. The connections among the causal nodes themselves

xed for all the learned BNs; they are the same as those
n in Figure 1. The prior CPD parameters of the discrete
istic nodes were estimated as Dirichlet priors. Since D is
lar node with all the parents being discrete, for each in-
ation of its discrete parents i ∈ Pa(D) the conditional
bility distribution (CPD) is given by an univariate Gaus-
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Figure 1: Example durational Bayesian network of size 10;
boxes represent discrete nodes, oval represents a continuous
node.

BN # Pa(D) # params
BN1 Cpost Length Round 80
BN2 Cpost Front Length Round 240
BN3 Cpost Front Height Length Round 720
BN4 Cpost Front Height Length WdCl 720
BN5 Wpost S Cpost Round 120
BN6 Wpost Cpost Length Round WdCl 480
BN7 Wpost Utt Cpost Front Height Length WdCl 6480

Table 2: Connections to the durational node D learned by the
K2 algorithm applied to the discretised data.

sian distribution with mean µ(i) and standard deviation σ(i):

P (y|i ∈ Pa(D)) =
1p

(2π)σ2(i)
exp{− (y(i)− µ(i))2

2σ2(i)
}
(3)

The prior parameters of this univariate Gaussian distribution
N(y; µ(i), σ2(i)) were estimated from the training set as sam-
ple means. All calculations were done in the z-score domain.
The learning of the parameters of the BNs was done via the EM
algorithm, with the causal nodes observed and the durational
node D hidden. Following the BN parameter learning, the infer-
ence was performed on the test set. The learning and inference
were done for 7 different BNs, for each database separately.

5. Experimental Results and Discussion
Given 7 different BNs learned by the K2 algorithm, we set
out to find the model that would be optimal in terms of RMS
error (minimum) and correlation coefficient (maximum).
We call this Maximum Correlation – Minimum RMS Error
(MAXC-MINEr) criterion. In Figure 2 the results of the
mean (across the database) RMS error values of the predicted
vowel durations by model type are shown. In Figure 3 the
results of the mean (across the database) correlation coefficient
values of the predicted vowel durations by model type are
shown. In general, in terms of RMS error all the BNs selected
for the analysis perform better that both SoP and CART
models. For ’rjs’ database BN4 model produces the mean
RMS error of 1.5ms compared to 8ms and 32.5ms for SoP
and CART models respectively. In terms of the correlation
values, there are some BNs (e.g. BN3 and BN4) that perform
better than CART model, and no worse than SoP model. For
’lja’ database BN1 model produces the mean correlation
value of 0.76 compared to 0.69 and 0.94 for CART and SoP
models respectively. Based on MINC-MINEr optimisation
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e 2: The mean RMS error values of the predicted
l durations by model type (Bayesian, CART and SoP) by
ase (’lja’, ’rjs’, and ’erm’).
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e 3: The mean correlation coefficient values of the pre-
vowel durations by model type (Bayesian, CART, and

by database (’lja’, ’rjs’, and ’erm’).

ion, we selected 3 optimal BNs: BN1, with the parent set
) = {Cpost, Length, Round}, BN3, with the parent
a(D) = {Cpost, F ront, Height,Length, Round},
and BN4 with the parent set Pa(D) =
st, F ront, Height,Length,WdCl}.
ince our optimal BN model selection criterion is based on
MS error and correlation values averaged across a paric-
atabase, we also looked at the performance of the opti-
Ns for each vowel class separately. We assumed that for

vowel class there may exist a different optimal network.
esults of the RMS error values of the predicted vowel du-
s by vowel class for BN4 model for ’lja’ database are

n in Figure 4. The results of the correlation values of
redicted vowel durations by vowel class for BN4 model
ja’ database are shown in Figure 5. As can be seen from
gures, for the majority of the vowel classes, BN4 model
s robust predictions of the vowel segment durations, with
MS error values ranging 1− 2ms, and the correlation val-
nging 0.47− 0.85. The obvious outlier was vowel /u@/;
he RMS error being 18ms and the correlation being 0.07.
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Figure 4: The RMS error values of the predicted vowel dura-
tions by vowel class by model type (Bayesian, SoP and CART);
’lja’ database; BN4 Bayesian model. Black bar represents the
results for ’lja’ , white bar - for ’rjs’, and gray bar - for ’erm’
databases respectively.
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Figure 5: The correlation values of the predicted vowel dura-
tions by vowel class by model type (Bayesian, SoP and CART);
’lja’ database; BN4 Bayesian model. Black - ’lja’, white - ’rjs’,
gray - ’erm’.

Comparing the correlation values for the segment /u@/ across
all the BNs had shown that BN4 being on average an optimal
choice, is not an optimal BN for this vowel. In fact, BN6 is
a better choice with the correlation value of 0.91. Likewise,
for the vowel /@/ it is the network BN1 that is optimal with
the RMS error and the correlation values being 2ms and 0.89
respectively. Having analysed the performance of 7 BNs, we
found an optimal BN model for each vowel class, for each
database. For each vowel class for ’lja’ database, for example,
the optimal BN models selected produce the correlation values
ranging 0.66 − 0.99 compared to 0.18 − 0.86 and 0.87 − 0.97
for CART and SoP models respectively.

6. Conclusions and Future Work
First, we implemented the BN structure learning procedure for
discretised durational data using the K2 structure learning al-
gorithm. Second, we analysed 7 BNs learned by the K2 al-
gorithm and chose the maximum correlation – minimum RMS
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optimal candidate network for each database. Third, for
vowel class we selected the optimal BN separately. For
vowel class the optimal BN model produces promissing
s in terms of RMS error values; our BN model signifi-

outperforms both CART and SoP models. In terms of
rrelation coeffcient, the BN model results are better than
model and comparable to the SoP model results. There-

Bayesian belief network model can be sucessfully used
wel duration modelling for text-to-speech systems. In the
, we will consider other linguistic factors such as word

ency and boundary type for our BN analysis. We will also
ment the BN durational model in the Festival [11] speech
esis system.
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