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ABSTRACT

This paper deals with the relation of acoustic-phonetic
knowledge and its role in automatic speech recognition.
Two applications of acoustic-phonetic knowledge are
considered in more detail: 1) coarticulation, i.e. the
context dependency of the acoustic realizations of
phonemes, and 2) speaker adaptation by vocal tract
length normalization.

About 25 years ago for each of these two applications,
there were already proposals for modelling these
types of acoustic-phonetic dependencies. However, in
order to successfully exploit these dependencies for
automatic speech recognition, the lesson we learned
is that a very careful integration of these dependencies
into the statistical approach is required.

1 Introduction

When we look back at the progress in automatic
speech recognition over the last three decades, we
observe that there had been plenty of attempts
to get away from the statistical approach, such
as spectrogram reading, acoustic-phonetic experts
systems and artificial intelligence based systems. None
of these approaches was found to be competitive with
the statistical approach, and the statistical approach
became even stronger over the years. For the progress
in automatic speech recognition, we can see the
following two patterns emerging during the last 30
years:

• Progress is achieved by (more or less) pure
statistical methods. Examples are Hidden
Markov models, continuous-valued mixture
densities, discriminative training criteria and
many methods for the adaptation to the speaker
and to acoustic conditions in general.

• Progress is achieved by a combination of the sta-
tistical and some acoustic-phonetic knowledge.
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Typically, such a combination goes hand in
hand with a suitable training procedure and
with the careful exploitation of training data.
Examples are the phonetic decision trees for
finding generalized context dependent phoneme
models and vocal tract length normalization for
speaker adaptation.

organization of this paper is as follows. First,
ill consider automatic speech recognition from the
tical point of view and contrast it with the work
onetics. Then, we will address the use of phonetic
ledge in phonetic decision trees. Finally, we will
nt the statistical framework of vocal tract length
alization.

Automatic Speech Recognition
and the Statistical Approach

ilding an automatic system for automatic speech
nition, we are faced with the problem of making
ions and learning from examples. It is exactly
where the statistical approach comes in. So
he most successful approach to automatic speech
nition (ASR) is the statistical one, which is based
e equation:

= Acoustic–Phonetic–Linguistic Modelling
+ Statistical Decision Theory

stical decision theory provides us with a powerful
work for both making good decisions and
ating parameters from examples.

he ‘low-level’ description of speech and image
ls, it is widely accepted that the statistical
work allows an efficient coupling between the
vations and the models, which is often described
he buzz word ‘subsymbolic processing’. The
al advantage in using probability distributions,

also holds for symbolic processing in natural
age processing tasks, is that they offer an explicit



formalism for expressing and combining hypothesis
scores:

• The probabilities are directly used as scores.
These scores are normalized, which is a desirable
property. When increasing the score for a certain
element in the set of all hypotheses, there must
be one or several other elements whose scores are
reduced at the same time.

• It is evident how to combine scores: depending
on the task, the probabilities are either
multiplied or added.

• Weak and vague dependences can be modelled
easily. Especially in spoken and written natural
language, there are nuances and shades that
require ‘grey levels’ between 0 and 1.

The most crucial role is taken by the probability
model, which provides the link between the input
data and the output data that have to be produced
by the recognition system. The probability model
has free parameters that are learned using a suitable
training criterion from training examples that are
representative of the recognition task to be performed.
In addition, we have the decision rule that is used to
select the most suitable output from the many possible
outputs.

Even if we think we can manage without statistics,
we will need models which always have some free
parameters. Then the question is how to train these
free parameters. The obvious approach is to adjust
these parameters in such a way that we get optimal
results in terms of error rates or similar criteria on a
representative sample. So we have made a complete
cycle and have reached the starting point of the
statistical modelling approach again!

When building an automatic system for speech recog-
nition, we should try to use as much prior knowledge
as possible about the task under consideration. This
knowledge is used to guide the modelling process
and to enable improved generalization with respect
to unseen data. Therefore in a good statistical
modelling approach, we try to identify the common
patterns underlying the observations, i.e. to capture
dependences between the data in order to avoid the
pure ‘black box’ concept.

When looking at today’s speech recognition technol-
ogy, it is surprising to see how little specific phonetic
knowledge is used. There are virtually no research
groups whose members are phoneticians. In the first
systems built for automatic speech recognition in the
70’s, there seemed to be more phonetic groups involved
than in today’s systems.

The type of acoustic-phonetic knowledge that is used
successfully in today’s speech recognition systems
appears to be rather general and not based on detailed
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using
etic knowledge. Although phonetics as such is also
rned with spoken language, there are a number
portant conceptual differences in the principles:

In speech recognition, I do not expect hard
decisions and simple rules to perform well at the
low level. In my view, a negative example is
provided by the attempts to come up with what
is referred to as distinctive features. Why should
we expect nature to be so simple?

Today’s high-performance speech recognizers are
able to learn from huge amounts of training data,
say more than 50 hours of speech. The question
is whether similar amounts of data can be
processed by a human phonetician and whether a
consistent and unbiased analysis of the acoustic-
phonetic phenomena can be guaranteed. In
automatic speech recognition, there are powerful
fully automatic training procedures so that
subjective effects are ruled out. In addition,
there are standard databases so that, at least in
principle, other researchers are able to verify the
experimental results reported.

ontext Dependent Acoustic Models
and Decision Trees

etic Decision Trees
problem of automatically defining and learning
xt dependent acoustic models has been studied
long time [2, 3, 4, 11]. We describe the variant
is widely used today [14].

the training of context independent phonemes (on
ining set of, say, 50 hours of speech), we have a
ed sequence of acoustic vectors x1, ..., xt, ..., xT

context dependent states s1, ..., st, ..., sT . To
ify the presentation, we will consider only the
bi or maximum approximation and ignore the
al tripartite structure of today’s HMMs. For each
xt dependent HMM state, there is an emission
bility distribution pθ(xt|st), which is a single
sian in the decision tree context.

onsider the triphone contexts in more detail. For
of 40 phonemes, there is a set of 403 = 64 000

one contexts. This number is too large to reliably
the model parameters for each context. In

ion, we face the problem that not all triphone
xts are seen in training, but nevertheless these
xts might come up in the test data. The remedy
th problems is to partition the triphone contexts
quivalence classes:

s → g(s)

an unknown mapping g(·).



To determine the unknown equivalence classes, we
resort to statistical estimation and apply the maximum
likelihood criterion to the full sequence of acoustic
training data:

arg max
s→g(s)

{
max

θ

{
T∑

t=1

log pθ

(
xt|g(st)

)}}

where the parameters θ of the Gaussian emission
distributions are also unknown and must be learned
from the acoustic data.

The mapping into equivalence classes is based on
a binary decision tree, the leaves of which define
the equivalence classes. For each triphone context,
we ask binary phonetic questions about the context.
Depending on the answer, the right or left child node
is selected and so on until we reach a leaf of the tree.
The type of phonetic questions is fairly general and
refers to the type of predecessor or successor phoneme
(e.g. nasal, vowel, fricative, ...). The structure
of this phonetic decision tree and the questions are
automatically learned from the acoustic training data.
Typically [14], by this approach, the word error rate
can be reduced by about 10% relative over other
approaches to context dependent modelling.

Grapheme-based Acoustic Models
In the approach presented in [6], we go one step further
and apply the decision tree concept directly to the
orthographic spelling of each word to be recognized.
The ultimate goal of a speech recognition system
anyway is to convert the speech signal into a sequence
of written characters. In such a way, we can also handle
an unlimited vocabulary, at least in principle.

In the present version, we make the rather
crude assumption that one character (or grapheme)
corresponds to one acoustic model. The questions
in the decision tree are now questions about the
predecessor and successor characters. For languages
where the pronunciation is close to the orthography
(e.g. German, Dutch or Italian), the application of our
approach works reasonably well and the performance
is comparable with phonetic decision trees. For
other languages (e.g. English), obviously, we need
an extension so that strings of characters can be
considered as a whole, with respect to both the
definition of the acoustic models and the questions in
the decision tree.

4 Vocal Tract Length Normalization
for Speaker Adaptation

The vocal tract length normalization is based on a
simple concept: in some approximation, the vocal tract
can be considered to be a system of acoustic tubes, and
therefore its resonance frequencies are dependent on
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ocal tract length [5, 7, 12, 13]. Thus the basic idea
eaker adaptation is to normalize the frequency
i.e. to apply a linear scaling of the frequency
before the spectral analysis is performed and
attern recognition process is started. In [9],
shown that such a scaling of the frequency

is equivalent to a linear transformation of the
tic vectors (with constrained matrix entries). The
em now is that the scaling factor itself is unknown
ts estimation is not easy, in particular because this
o be done in a fully automatic fashion.

a quantitative description, we introduce the
ing notation:

coustic vectors: X = x1, ..., xt, ..., xT

word sequence: W = w1, ..., wn, ..., wN

s denote the speaker dependent scale factor by
he class conditional probability pθ(X|W,α) is

uted using a hidden Markov model framework:

|W,α) =
∑
sT
1

T∏
t=1

[p(st|st−1,W ) · pθ(xt|st,W, α)]

state sequences sT
1 , transition probabilities

t−1,W ) and emission probabilities
|st,W, α). The emission probabilities depend
on some model parameters θ and the unknown
factor α.

e statistical spirit [10], we have to integrate out
the unknown random variable α to obtain the α-
endent class conditional probability:

θ(X|W ) =
∫

dα pθ(X, α|W )

=
∫

dα pθ(α|W ) · pθ(X|W,α)

∼= max
α

{
pθ(α|W ) · pθ(X|W,α)

}
e, in the last equation, we have applied the widely
maximum approximation.

, under the condition that α is unknown, we
n the following Bayes decision rule for the
own word sequence W using a language model
:

ax
W

{
p(W ) ·

∫
dα pθ(α|W ) · pθ(X|W,α)

}
∼=

arg max
W

{
p(W ) · max

α
{pθ(α|W ) · pθ(X|W,α)}

}
same framework can also be applied to linear
formations of the acoustic vectors [8].

ain the unknown model parameters θ, we have to
into account that the scale factor α is unknown
ch training speaker. For each speaker r, we are



given a pair (Xr, Wr) of acoustic training data Xr and
a word sequence Wr.

Using the likelihood criterion, the unknown model
parameters θ can be estimated by the optimization [1]:

arg max
θ

{
R∏

r=1

∫
dα pθ(α|Wr) · pθ(Xr|Wr, α)

}
∼=

∼= arg max
θ

{
R∏

r=1

max
α

{
pθ(α|Wr) · pθ(Xr|Wr, α)

}}

This result is a very complex optimization problem, in
particular because there is some interaction between
the model parameters θ and the scale factor α, which
tends to be masked by the Gaussian mixtures used
for the emission probabilities. Methods have been
designed to avoid these complications [7, 13].

In the recognition experiments, it is typically found
that the vocal tract length normalization reduces the
word error rate by 5% to 15% relative over that of the
baseline system.

5 Conclusion

Evidently, there is room for improvement in all
areas of speech recognition, in particular signal
analysis (or feature extraction) and adaptation at
all levels: speaking rate, pronunciation lexicon,
acoustic conditions (microphone transfer function,
room acoustics, ...). The interesting question is how
much the phonetic sciences are able to contribute to
these future improvements.
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