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ABSTRACT

Despite much research on the performance of dis-
tributional category learning models on Standard
North American English (e.g., Feldman [2], deBoer
and Kuhl [1], McMurray et al. [10], Vallabha et
al. [16], and many others), statistical learning of
vowel categories of other regional varieties remains
vastly underaddressed in computational literature.
This paper applies an unsupervised infinite mix-
ture model (as developed in Feldman [2]) to vow-
els from a corpus of Glaswegian English sociolin-
guistic interviews. While originally developed for
North American English vowels in carrier syllables
devised by Hillenbrand et al. [4] to limit variation
due to phonetic context, the distributional learner
was also able to categorize vowels largely correctly
across speech styles common to sociolinguistic in-
terviews. This displays the ability of the distribu-
tional learner to operate relatively well on data with
extensive overlap from running Glaswegian English
speech, demonstrating that computational models of
category acquisition can handle more complex in-
puts than minimal pair lists, and can be used with
naturally-occurring speech from non-standard re-
gional varieties.
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1. INTRODUCTION

The distributional vowel category learner introduced
in Feldman [2] that relied only on first and second
formant information performed somewhat well on
variable data coming from multiple speakers. Al-
though later models included in Feldman [2] im-
proved upon the initial model by also adding lexical
information and computing the distributional con-
figuration of phonemes based on their lexical con-
straints, in this paper the initial distributional model
is used on even more variable data, showing that a
distributional learner can also be applied to natu-
rally occurring speech with some success. As Feld-

man [2] and others such as McMurray et al. [10]
and Vallabha et al. [16] point out, distributional cat-
egory learners typically only work well when there
is a separation in formant space between vowel cat-
egories. The high overlap between vowel categories
that occurs in realistic speech is not easily disam-
biguated by a category learner model, but for chil-
dren acquiring language it has been shown to not be
as difficult and to begin quite early in the acquisition
process [6], despite that children have been shown
to use a statistical learning process for auditory tones
similar to the one used by most computational learn-
ers, including the distributional model under consid-
eration in the present paper [13].

The training corpus used by Feldman [2] for the
distributional learner takes its phonetic category pa-
rameters from the Hillenbrand et al. [4] study of
American English vowels. One simulation is run
with data from 45 male speakers, and another sim-
ulation is run with formant data from both the male
and female speakers, totaling 139 individuals. The
formant data that makes up the training corpus is not
raw data, but is a random sampling of the Gaussian
distribution of the means and covariances from the
phonetic data for each vowel category, based on the
frequency of that vowel category in parental speech
in CHILDES [9]. The means and covariances of
only male vowel formant values from Hillenbrand
et al. [4] are sampled to create one 20,000 token
corpus, and a second 20,000 token corpus is cre-
ated from the means and covariances of male and fe-
male formant values combined. Feldman’s [2] idea
behind this is to create one corpus of less variable
data (males only) and one corpus of more variable
data (males and females), with the hypothesis that
the distributional learner will perform better on the
less variable corpus, with an encoded bias towards
fewer phonetic categories and towards the center of
the vowel space.

Although Feldman [2] considers the vowel data
from Hillenbrand et al. [4] to be highly variable and
representative of a realistic input that must be cat-
egorized in language acquisition, this data is only



conservatively variable relative to naturally occur-
ring vowel data such as is found in the sociolinguis-
tic interview setting. The formant data in Hillen-
brand et al. [4] come from vowels produced in h-
V-d syllables in isolation, which eliminates variabil-
ity due to stress and prosodic patterning, allophony
and other influences of surrounding context, and so-
ciolinguistic factors such as style and register. The
vowel data in the current paper are thus considerably
more variable than the data originally used, as the
current data come from sociolinguistic interviews
containing three separate styles (word list, reading
passage, and conversation sections) with six speak-
ers of Glaswegian English.

2. DATA

The input to the model is normalized vowel formant
data from six sociolinguistic interviews recorded in
a laboratory setting in Glasgow, Scotland in 2009.
Hour-long interviews were conducted with three fe-
male and three male Glaswegians of working-class
backgrounds aged 18 to 25. F1 and F2 measure-
ments from the primarily and secondarily stressed
vowels with duration over 50ms, excluding pre-
rhotic vowels, diphthongs, and vowels in lexical
items that tend to reduce (e.g., function words), were
gathered through forced alignment and extraction
with FAVE [12] set to use the British English Exam-
ple Pronunciation dictionary [11], as recommended
by Mackenzie and Turton [8]. In word list and
reading passage styles, formant measurements were
obtained manually. Two corpora of 20,000 F1-F2
pairs, following the methodology of Feldman [2],
were designed: one with combined word list and
reading passage data with phoneme frequencies ad-
justed to match token probabilities from the Unisyn
lexicon [3] set to Edinburgh post-lexical rules, and
one with unadjusted conversational data. The first
simulation in this paper is run on word list data from
all six of the interviews, and the second simulation
is run on conversation style data from one interview.
In addition, normalized formant values for each cat-
egory are used in lieu of a random sampling of a
Gaussian distribution, providing even more variabil-
ity to the dataset through the existence of outliers.
Despite these new challenges to the distributional
learner, it is able to parse close to the correct num-
ber of vowel categories in each dataset, with an only
somewhat diminished F-score.

3. SIMULATION WITH TRAINING SET 1:
WORD LIST VOWELS

The formant values for this training set were taken
from a word list of 80 tokens stratified by vowel
and from six speakers, three males and three fe-
males. All speakers were native Glaswegian speak-
ers of Scottish English of working-class background
between the ages of 18 and 25 to control for sociolin-
guistic variation in Scottish English by age, class,
and region. Diphthongs and schwa were excluded,
although pre-rhotic vowels were included, as vow-
els in this context maintain contrasts and are largely
unreduced in Scottish English. Figure 1 shows
the formant values of the word list tokens across
all speakers, normalized using the Labov (ANAE)
method [7].

Figure 1: Normalized formant values in the cur-
rent dataset.
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Despite the careful style promoted by the wordlist
task, there is still considerable category overlap
among these tokens of vowels (though the dataset
from Hillenbrand et al. [4] also shows overlap be-
tween vowel categories). Following the methodol-
ogy of Feldman [2], a corpus was created from the
tokens of vowels based on phonemic probability in
CHILDES (modified for Scottish vowel categories).
This resulted in a corpus of 735 tokens. Table 1
shows the token probability by vowel.

The IMM (infinite mixture model) distributional
learner was run on two dimensions (first and second
formants) of the 735 vowels from the word list cor-
pus, adjusted for phoneme probabilities. There was
a prior on the phonetic category parameters for cate-
gory means towards the center of the vowel space—
of 500 on the first dimension and 1500 on the sec-
ond dimension, and a prior to bias the model to-
wards fewer phonetic categories. A factor which



Table 1: Empirical probability of Scottish English
vowels by word token (adapted from CHILDES
Phonematized Parental Frequency Count.)
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differentiates the Scottish English data used in this
study from the American English data used in the
previous work is the number of vowel categories.
While Feldman [2] based the success of her distri-
butional learner on its ability to recover all 11 cate-
gories of American English vowels (once schwa and
diphthongs /a1/ and /au/ are removed), Scottish En-
glish contains 9 vowels not considering schwa and
diphthongs. The distributional learner overcatego-
rized this data after 10,000 iterations— into 10 sep-
arate vowel categories, rather than the 9 expected,
while Feldman found that the learner undercatego-
rized her data— finding 10 of 11 categories. The F-
score of the distributional learner on this dataset was
.32, less than the .45 F-score found by Feldman [2]
for the distributional learner on the corpus of male
and female tokens, but considering the increase in
variation within categories in this dataset due to
the vowel formant values being extracted from real
words rather than from the artificial context of h—V-
d used in Hillenbrand et al. [4], this reduction in the
F-score, representing somewhat worse performance
by the distributional learner, was expected.

4. SIMULATION WITH TRAINING SET 2:
CONVERSATION

The same IMM distributional learning model was
then run on vowel data from the conversational sec-
tion of a sociolinguistic interview. Future work will
expand this to the conversational sections of all six
interviews in this corpus. With a hypothesis that this
further shift towards naturalistic speech will intro-
duce even more variability among vowel categories,
tokens from only one speaker were used to create
the corpus in this dataset. Another dimension of
variability in this dataset is that while the word list
vowel tokens were extracted by hand with the first

Figure 2: Normalized vowel category means
from Scottish English wordlist data.
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Figure 3: Categories found by distributional
learner.
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and second formants measured at the vowel mid-
point, in the conversational data, due to time re-
strictions, FAVE, a forced alignment and extraction
tool, [12] was employed. Because the length of the
naturally-occuring speech from which the vowels
were extracted was robust enough (~ 30 minutes) to
approximately represent phonemic probability dis-
tributions, the training corpus was created simply
from the non-normalized vowel tokens— they were
not manipulated to replicate the phonemic probabil-
ity for the word list training corpus as shown in Table
1 in the previous section. Reduced vowels, such as
those that occur in function words, were removed,
as well as vowels in unstressed position in words,
diphthongs, and vowels less than Sms in duration.
The resulting vowel corpus consisted of the first and
second formants of 2,182 vowels. Figures 4 and 5



show the overall distribution of vowel tokens and the
categories found by the distributional learner. The
vowel learner recovered 6 vowel categories out of
the 9 actual vowels present in the conversation, for
an F-score of .47, higher than both the F-score from
Feldman [2] for combined male and female phonetic
parameters and the F-score found for the wordlist
training data from males and females in the previous
section of the paper.

Figure 4: All vowel tokens from conversation col-
ored by actual vowel.
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Figure 5: Vowel categories learned from conver-
sation.
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5. CONCLUSIONS

This work points towards some interesting future di-
rections for the possibility of using statistical vowel
learners on more realistic speech data. The learner
recovered 6 out of 9 vowel categories in conversa-
tional running speech with a relatively high F-score

of .47 for the conversational speech training dataset,
which was comprised of raw, non-normalized for-
mant frequencies that had not been randomly sam-
pled by mean and covariance of a Gaussian distri-
bution, but occurred just as they did in the conver-
sational section of the sociolinguistic interview, in-
cluding outliers. It outperformed both the distribu-
tional model applied to the word list training cor-
pus and Feldman’s [2] original reported F-score of
.45 when the distributional learner was applied to a
training corpus based on a combination of male and
female phonetic parameters (Feldman’s [2] training
corpus made of just male vowel tokens, though, had
a higher F-score of .699 using just the distributional
model). The lower F-score for the wordlist training
set, and the higher number of categories found, ex-
ceeding even the actual number of vowel categories
in Scottish English, may have been due to the effect
of surrounding phonetic context on the vowels of the
relatively short word list.

In future work, it will be important to create
a training corpus from a random sampling of the
Gaussian distribution of formant values for each
vowel category of the word list, rather than using
all of the normalized frequencies, which may in-
clude allomorphic effects. The finding that the dis-
tributional learner was able to recognize six distinct
vowel categories in the conversational style corpus
of one speaker is important, as it indicates that just
based on thirty minutes of non-normalized, natu-
rally occurring speech, with no lexical effects, us-
ing statistical learning, language acquirers can be-
gin to segment the distribution of vowel categories
in their language somewhat successfully. This F-
score will certainly improve with the addition of lex-
ical information using one of Feldman’s [2] lexical-
distributional models, but these are unexpectedly
successful results for the distributional learner alone,
applied to wvariable, naturally-occurring formant
data. Future directions for this work will also be
to include normalized conversational-style vowel to-
kens from all six sociolinguistic interviews in a
training corpus for the distributional and lexical-
distributional learners, and perhaps to include an F3
dimension to attempt to disambiguate the Scottish
English fronted /w/ from the other, non-round front
vowels, as it most likely does not differ from 1 very
much in F1 or F2. Although Feldman [2] ultimately
improves her original distributional learner to ac-
count for lexical constraints, this paper shows how
the IMM distributional learner, run on only two for-
mant frequency dimensions, can discover a number
of vowel categories in spite of the extensive overlap
involved in conversational-style speech.
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