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ABSTRACT 
 
This paper considers sources of error in common 
vowel formant extraction techniques, investigating 
the extent to which the temporal point of 
measurement and software settings influence the 
formant values obtained. To do this, we report on the 
results of a vowel measurement simulation where, 
rather than extracting a single measurement for each 
vowel token, thousands of measurements are taken 
for each vowel with varied settings in jittered 
measurement locations (seeded by measurements 
from human analysts). Such an undertaking, we 
argue, yields important insight into the bounds of 
measurement error in vowel analysis. 
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1. INTRODUCTION 

Formant analysis has become a central methodology 
in the acoustic study of vowel systems in a range of 
phonetic disciplines. Drawing conclusions from 
observed differences between formant values under 
varying conditions (e.g., across vowel categories, 
across speakers or regions, across speaking styles, or 
as a result of particular manipulations in the 
laboratory) is an important source of phonetic 
knowledge. Most present-day analysts acknowledge 
that best practices are needed in areas like statistical 
analysis and inter-analyst agreement for acoustic 
research. Furthermore, recent years have seen 
progress in improving vowel analysis techniques, 
such as through vowel normalization procedures 
(e.g., [1, 5, 6, 16]), and automated and semi-
automated vowel alignment and extraction (e.g. [12, 
15]). Despite this attention to methodological rigor, 
the fact remains that error can be introduced by a 
number of sources in acoustic vowel research, and 
many of these potential sources have been under- 
addressed. 

The source of error we take up in this paper is 
that introduced in the measurement of vowel 
formants. Vowel formant measurement is in fact 
estimation and no single “correct” value exists as an 
essential property of an individual vowel token [17, 
18]. That is, vowel measurement techniques, such as 

the formant tracking implemented in Praat [2], seek 
to obtain the most accurate estimates of formant 
frequencies through the use of signal processing 
algorithms, often using linear predictive coding 
(LPC) analysis [2, 17, 18]. However, it is known that 
there are limitations in the precision of vowel 
estimates as a function of LPC methods [2, 10, 11, 
17, 18], and as a function of the properties of the 
acoustical signal being studied [3] (e.g. noise [14]).  

Little research has explicitly or quantitatively 
studied the extent to which differences in analysts’ 
settings and decisions matter for the outcome of an 
investigation (though see [4, 10, 11]). In this paper, 
we report on the results of a simulation experiment 
which sheds light on the bounds of variability 
obtained through formant estimation. In particular, 
we look at the effect of different measurement time 
points and different LPC settings. 

2. THE SIMULATION 

Our investigation is rooted in the widespread use of 
Praat and its LPC algorithm for formant analysis. 
Further, we base our study on the premise that if any 
analyst is given a list of specific vowel tokens from 
a single audio recording and asked to measure the 
formant frequencies of the first two formants (F1, 
F2), the analyst has a limited set of decisions to 
make: Where exactly is the vowel (i.e. what are its 
boundaries)? What time point(s) in the vowel should 
be measured? And, what LPC settings should be 
used? Thus, in terms of actually measuring (i.e. 
estimating) formant values from a given set of 
tokens in a given recording, all variability, 
unreliability, and inaccuracy arise from only two 
sets of parameters the analyst controls: choices 
involving the time point(s) measured, and choices 
involving the LPC algorithm and its settings. Two 
settings commonly manipulated by analysts are the 
number of LPC coefficients and the maximum 
formant frequency (set by Praat users in Praat’s 
“Formant Settings…” menu). While the manipula-
tion of other settings is possible in Praat (e.g., time 
step, window length, pre-emphasis), we do not 
consider them here. The number of LPC coefficients 
and maximum frequency together are generally 
accepted as crucial adjustments to the formant 
tracker and are recommended to be made on a per-



speaker and per-token basis. In terms of the temporal 
location of the vowel measurements we follow a 
common convention (e.g. [8]), and conceptualize 
target formant values as single measurement points 
for each vowel, at 1/3 the duration of the vowel.  

The data for this simulation, recorded word list 
elicitations, come from a series of audio recordings 
collected for a project on regional production and 
perception differences in U.S. English [8]. Speakers 
were recorded with a Tascam digital recorder and a 
Shure WH30XLR head-mounted microphone in a 
quiet university office or home, with just the 
fieldworker and participant present. The original 
measurements, made by a team of trained analysts, 
and the settings used for those original measure-
ments, are treated as seed values for the simulation. 
A bootstrapping algorithm was given the seed values 
as input, and varied the following parameters 
according to a normal probability distribution: 
• The time point of measurement (Time) 
• The number of formants (NumFs) 
• The maximum frequency (MaxHz) 

Time was varied around the seed value time points 
within a distribution of ±10% of each vowel’s 
duration, NumFs was varied within ±1.5 formants 
(±3 LPC coefficients) of the seed setting, and 
MaxHz ranged from ±1,000 Hz around the seed. 
While NumFs and MaxHz can interact in their 
effects on the formant tracking, for simplicity we 
allowed them to vary independently here. We ran the 
bootstrap simulation for 1,000 iterations over 10 
vowel categories (1 token per category) for four 
speakers, a male and female from the Western U.S. 
and from the Southern U.S.  

The tokens come from the following vowel 
categories in American English: /i/, /ɪ/, /e/, /ɛ/, /æ/, 
/ɑ/, /ɔ/, /ʌ/, /o/, /u/. For each speaker, we selected the 
individual vowel token from the original, human-
analyst measurement set (from [8]) closest to that 
vowel category mean. Fig. 1 displays the original 
vowel plot for one of the four speakers, the Western 
female. The plot depicts her mean for each vowel 
category (depicted by the IPA symbol) with ellipses 
indicating one standard deviation. Xs indicate the 
position of the individual tokens used for the 
simulation for each category, and standard orthogra-
phy depicts the word from which the token comes 
(e.g. SEAT, SOUP, etc.).  

Overall, the simulation can be thought of as 
representing 1,000 “reasonable” analysts, each 
picking a time point for each token and using LPC 
settings similar to the seed values. Some of these 
simulated analysts’ decisions will be more reason-
able than others (some will be practically identical to 
the seed values), and a few will be fairly bad choices 
of settings and time points. 

Figure 1: Vowel plot showing the seed values for 
the Western female speaker. 

 
Figure 2: Vowel plot showing the results of the 
simulation for the Western female speaker. 

 

3. RESULTS 

The simulation results in 10,000 vowel measure-
ments per speaker, 1,000 measurements for each of 
the 10 vowel tokens. Fig. 2 shows these resulting 
formant values overlaid on the monochromatic 
vowel plot of the speaker shown in Fig. 1. The other 
three speakers are not shown, for sake of space. 
Each point, colored by vowel category, represents a 
simulated measurement and the colored ellipses 
depict one standard deviation from the mean of each 
of the 1,000 measurements, with the means repre-
sented by larger dots. 

In order to present the overall results for the four 
speakers, Figs. 3 & 4 display boxplots for F1 and F2, 
respectively, for each vowel for each speaker. The 
figures for F1 and F2 are displayed with the same 
scale (0 Hz – 3,500 Hz) for ease of comparison. 

The results of the simulation could be reasonably 
interpreted in either of two ways. First, it can be 
noted that many of the distributions are fairly tight, 
as indicated by the small size of many of the boxes 



in the boxplots. Thus, we could say that despite 
some noise, the simulation largely obtains coherent 
estimates. On the other hand, given that we derived 
the simulation measurements around seed values 
from “good” estimates in the first place, we could be 
struck by the amount of variability, as shown in the 
large number of outliers in the plots. Regardless of 
which view we take, our current state of knowledge 
does not provide us a best-practice way to determine 
the boundary between what we might interpret as 
“good” estimates and “bad” estimates, a problem to 
which we return in §4.  
	
  

Figure 3: Boxplots showing F1 values for each 
vowel and speaker. 

	
  
 
Figure 4: Boxplots showing F2 values for each 
vowel and speaker. 

	
  

3.1. /u/ fronting: A case study 

To examine the effect of measurement parameters 
on formant estimation more closely, we turn to 
consider one vowel in detail, the /u/ vowel in SOUP 
for the Western female. /u/ is well known to be 
fronting across varieties of English around the world 
[7, 9, 12] and, thus, the F2 positions of a speaker’s 
/u/ productions are often of interest in sociophonetic 
studies. Figs. 2-4 show that F2 is variable across the 
simulation for all speakers; the LPC settings used 
and time points measured in the vowel impact the 
values obtained. Here, we explore which specific 
parameters account for this variability in the 
resultant measurements of /u/ F2. 

Figure 5: F2 of /u/ by Time, NumFs, and MaxHz 
for the Western female speaker. 

 
 
Fig. 5 displays the simulation-generated F2 

values for the SOUP token from the Western female 
speaker as a function of the Time (left), NumFs 
(center), and MaxHz (right). The gray lines depict 
the seed values in each panel and the dashed red line 
depicts the output of a lowess smoother. It is clear 
that no one parameter accounts for all of the 
variability. The estimated F2 values of /u/ appear to 
be largely a function of both the time point measured 
and the number of formants used in the LPC 
analyses. Specifically, /u/ backs more with later 
measurement points. This is a sensible result, since 
/u/ is generally characterized in English varieties by 
a diphthongal, back-gliding trajectory. Also, low 
numbers of formants in the LPC settings result in 
higher F2 values. This too makes sense given that 
fewer coefficients in the LPC algorithm’s settings 
will pull the tracking of F2 higher, towards F3. 
MaxHz here appears to be less influential in 
impacting the output of the measurements (likely, 
the simulation did not set MaxHz values low enough 
in this case to have a large impact on F2 estimates), 
although the largest outlier measurements probably 
result from an injudicious combination of NumFs 
and MaxHz. 

Most important here is the observation that many 
of the “incorrect” values for /u/ F2 look like 
perfectly valid values but would confound an 
analysis of back vowel fronting. That is, an analyst 
using an earlier time point or a lower number of 
formants than another analyst would conclude that 
the speaker is engaging in more /u/ fronting. Thus, 
slightly different analytical decisions in measure-
ment parameters yield different but reasonable 
looking results, impacting the degree of /u/ fronting 
“discovered” for this speaker. 



4. DISCUSSION 

As discussed in §3, we can conceptually group the 
simulation output into two broad categories. We 
obtain some measurements that are clearly bad, 
resulting from poor choices of parameters. Many of 
these “erroneous” values would presumably catch 
the eye of human analysts and would be corrected or 
removed from the dataset. We can also identify 
measurements, however, that fall within the bounds 
of what could be considered acceptable, even good, 
measurements by a human analyst. The issue is: 
How do we define the cut off between acceptable 
and unacceptable tokens? 

In this simulation, we began by starting with 
“reasonable” values generated by trained human 
analysts and then created sets of similar 
measurement parameters based on those seed values. 
It may seem circular to assess the success of the 
simulation based on those original values. However, 
our goal is not just to assess how well the simulation 
recreates the seeded values. Rather, the simulation 
gives us a means to examine the boundary between 
“good” and “bad” measurements.  

One way to do this is to compare the central 
tendencies of the simulation results against the 
original seed values. Since many extreme outliers 
fall into the “erroneous” category and would likely 
be avoidable by trained human analysts (e.g. by not 
making obviously inappropriate choices about 
formant settings and by remeasuring clearly bad 
formant values), we first trim, for all speakers, the 
simulation’s extreme measurements for each vowel 
token, those that are more than 2 standard deviations 
from the mean for that token (this removes between 
18-160 measurements per token, M = 81.9). Then, 
we calculate the absolute difference between the 
median for the remaining simulation measurements 
and the original seed value.  

 
Table 1: Absolute Hz value differences between 
median of simulation results (trimmed at 2 SDs) 
and the original seed values. 

 W, fem. W, male S, fem. S, male 
V. F1 F2 F1 F2 F1 F2 F1 F2 
/i/ 2.6 10.6 5.8 7.1 0.3 0.4 0.2 4.5 
/ɪ/ 0.7 0.1 4.8 7.2 0.8 14.7 14.0 138.0 
/e/ 3.8 7.8 8.2 11.2 6.6 31.4 9.7 9.8 
/ɛ/ 5.2 8.1 20.8 12.4 18.8 14.1 8.1 5.1 
/æ/ 5.3 13.2 0.9 16.6 18.5 62.4 2.2 7.0 
/ʌ/ 0.3 2.5 19.5 16.1 3.9 6.9 4.9 6.2 
/ɑ/ 3.8 24.7 0.0 5.7 0.3 7.2 6.3 3.3 
/ɔ/ 3.5 2.3 22.8 6.9 1.2 9.5 1.1 2.7 
/o/ 1.7 11.0 9.9 8.4 3.7 2.4 3.6 1.3 
/u/ 2.3 6.1 1.0 10.6 0.8 3.6 1.6 37.1 
M 2.9 8.6 9.4 10.2 5.5 15.3 5.2 21.5 
SD 1.7 7.0 8.7 3.9 7.2 18.8 4.4 42.2 

These results, for F1 and F2 for each speaker’s 
vowels, are displayed in Table 1. For most vowels, 
we obtain F1 values within about 6 Hz of the seed 
values and F2 values within about 14 Hz (based on 
the mean of speaker means), but we also find some 
cases with much larger differences, as much as 138 
Hz for the F2 of the Southern male for /ɪ/. Thus, 
even when only including settings similar to those 
that would be used by sensible human analysts, we 
find variability in the resultant formant values. 
Notably, some of this variability is of similar 
magnitude to vowel differences reported as signifi-
cantly distinguishing between groups or conditions 
in the research literature. 

5. CONCLUSION 

The simulation presented here is meant as a first 
attempt at better understanding and quantifying 
variability, inaccuracy, and error in vowel formant 
measurements. Its results suggest that analysts 
should be cautious in interpreting small Hz 
differences as meaningful, whether in comparing 
between studies, in comparing between individual 
subjects in the same study, or even in comparing 
between individual vowel tokens. Specifically, the 
average differences between our simulated 
“analysts” and original seeds suggest, conserva-
tively, that we should not interpret F1 differences 
less than 6 Hz and F2 differences less than 14 Hz as 
meaningful. 

The variability observed in the simulation could 
be assessed in a variety of ways. In this paper we 
opted to compare the simulation results to a set of 
“gold standard” values (the seed values) produced 
by trained human analysts. Alternatively, simula-
tions like this could be used to determine not what 
are the most correct formant values, but what are the 
most probable formant values. We suggest that this 
is a promising direction given that (1) formant 
measurement is always estimation and therefore no 
single value will necessarily best represent an 
estimate and (2) such a method could help advance 
automated techniques. While our simulation was 
based on a set of seed values from human analysts, a 
similar version could be built to bootstrap the entire 
distribution of possible values. We leave this for 
future work. In closing, we note that simulations of 
analyst behavior provide a means to make 
measurement variability in vowel formant estimation 
more tractable. 
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