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ABSTRACT

A factor analysis of vocal-tract outlines derived au-
tomatically from real-time magnetic resonance im-
age (rtMRI) sequences has been performed. The
analysis results in a compact representation of vocal-
tract shapes, where every utterance is represented by
a small set of trajectories corresponding to weights
in linear combinations of linguistically interpretable
vocal-tract deformations. Vocal-tract shapes can be
reconstructed with good accuracy from these trajec-
tories. The work uses information from a signifi-
cantly larger number of speech frames compared to
previous attempts in articulatory modeling. The pro-
posed method is illustrated through a case study of
rtMRI data corresponding to 250 sentences spoken
by a single speaker and underscores the promise of
the methodology for phonological analysis and ar-
ticulatory synthesis.
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1. INTRODUCTION

Real-time magnetic resonance imaging (rtMRI) has
recently allowed the acquisition of dynamic data on
the entire midsagittal slice of the vocal tract at a
high enough spatio-temporal resolution, in ways and
volumes that were hitherto not possible, especially
given the limitations of X-ray imaging due to safety
and ethical concerns [12, 1]. The recent release of
the USC-TIMIT database has made a large corpus
of such data freely available to the research commu-
nity [13].

Information from rtMRI comes in the form of
videos that may not be readily amenable to large-
scale analysis before the application of some fea-
ture extraction method. Often, such methods target
specific regions of the vocal tract, depending on the
phenomenon under study [7, 16, 5, 15]. We pro-
pose here a method to extract a set of features cov-
ering the entire midsagittal slice that comprises two
steps: first, the automatic derivation of the outlines
of articulators in each rtMRI video frame, based on

a previously published segmentation algorithm [2];
second, the conversion of the dynamics of these out-
lines into a series of phonetically meaningful trajec-
tories, from which the entire midsagittal slice can be
readily reconstructed with sufficient accuracy. Such
a compact representation of the entire tract may
prove beneficial for the analysis of vowels, where
overall shaping is more relevant than particular con-
strictions, and in the context of articulatory synthe-
sis [10, 17], since it may better capture the natural
deformations of an exemplar speaker’s vocal tract
than a general articulatory model [11, 4, 19, 9].

We drew inspiration from Maeda’s work on artic-
ulatory modeling [8, 9], in developing the analysis of
this paper. That said, there are a few key differences
between our modeling and Maeda’s. First, while
Maeda used measurements on an articulatory grid,
we target directly the coordinates of points on the ar-
ticulatory outlines. This is enabled by the segmen-
tation method used, which displaces a fixed num-
ber of points on the outlines of 15 vocal-tract struc-
tures. Second, we introduce an analysis of the velum
deformation, as well as a factor for the shaping of
the arytenoid cartilage which accounts for voicing.
The shaping of the arytenoid is visible in rtMRI
which images a thin (5mm) slice cutting through the
speaker’s head, as opposed to X-ray which images a
projection from the side (see Fig. 1). Third, while
Maeda used data from 10 short sentences (about
1000 frames – at 50 fps), we use data from 250 larger
sentences (18,130 frames – at 23.18 fps).

2. REAL-TIME MRI DATA AND
SEGMENTATION

We used midsagittal rtMRI data from the F1 speaker
of the USC-TIMIT database [13], a 23-year old fe-
male speaker born in New York. The speech mate-
rial recorded with rtMRI corresponds to the 460 sen-
tences of the MOCHA-TIMIT dataset [18]. These
data were subjected to an updated version of an
automatic segmentation algorithm previously pub-
lished [2]. The segmentation method considers the
outlines of 15 anatomical features comprising three
connected regions of tissue (see Fig. 2). For every



Figure 1: Two examples of rtMRI segmentation.
Left: /z/ from the utterance “This was easy for
us”. Right: /s/ from“Is this seesaw safe”. Note
that the orientation of the head is different in the
two images. The left image belongs to the subset
that is used in the analysis. Note also the different
shape of the visible structure (arrow) at the ary-
tenoid cartilage area that can distinguish voiced
vs. unvoiced.

image in a video sequence, the method incremen-
tally deforms an initial set of anatomical feature out-
lines (a template), by displacing a fixed number of
points on each outline, until a fit to the observed im-
age data is achieved. We did not perform a formal

Figure 2: Anatomical features used in the seg-
mentation algorithm. Each feature is sampled at
the number of points shown in parentheses.

evaluation of the goodness-of-fit of these articula-
tory contours. That would require the manual seg-
mentation of at least a subset of rtMRI video frames,
which is in itself a process amenable to errors. We
relied on visual inspection of the contours, which
was satisfactory.

A technical problem during the recording of these
data resulted in the first 250 utterances having a dif-
ferent orientation of the speaker’s head compared to
the rest of the dataset (see Fig. 1). To avoid any prob-
lems that might arise from co-registering these two
subsets, the analysis presented in this paper is based
only on the first 250 utterances.

3. FACTOR ANALYSIS METHODOLOGY

After segmentation, there are 184 points describ-
ing the articulatory contours corresponding to each
rtMRI frame. Direct application of Principal Com-
ponent Analysis (PCA [6]) on the xy coordinates of
these points leads to a set of factors that optimally
explain the variance of these coordinates across the
dataset. Fig. 3 visualizes the two most significant
principal components which appear to correspond to
combined deformations of several articulators (e.g.
jaw, tongue, lips, and velum). Our aim however

Figure 3: Visualization of the two most signif-
icant factors derived by PCA on the entire con-
tours (±2 standard deviations). Numbers at lower
left corner indicate the percentage of variance ex-
plained by each factor.

is that each factor has a specific articulatory corre-
late, i.e. is linguistically interpretable. In what fol-
lows, we are describing a methodology that aims to
achieve this goal, starting from an analysis of the jaw
movement.

3.1. Jaw

We apply PCA focused on the jaw and mandible out-
lines shown in Fig. 2. That is, we apply PCA on the
data after setting the values of the xy coordinates of
the points on all the other structures at their mean
values across the dataset. The left panel of Fig. 4
visualizes the most significant principal component
(a vector of length 368), which explains about 45%
of the jaw and mandible variance, and corresponds
well to the linguistically important jaw opening ges-
ture. Further principal components (not shown here)
appear unrelated to the opening gesture.

Adopting a jaw-based approach to articulatory
modeling, it is crucial to extract the component of
the deformation of the tongue and lower lip that is a
direct consequence of the jaw opening gesture. To
achieve this, we first set the xy coordinates of all
outlines not it Region 1 of Fig. 2 to their mean val-
ues, and calculate the covariance matrix, let R, of
this modified dataset. If t1 is the first jaw princi-
pal component previously derived, define v = t ′1Rt1,



Figure 4: Left: First jaw principal component.
Right: The component of deformation of the en-
tire lower vocal-tract region, which is a direct con-
sequence of the first jaw principal component.

h1 = t1/
√

v, and f ′1 = Rh′1 [14, 3]. A visualization of
f1, which can be regarded as a factor of the data re-
placing the first jaw principal component, is shown
in the left panel of Fig. 4.

3.2. Tongue

We first subtract the contribution of factor f1 from
the data, by anew = a(1− f1 f †

1 ) where † denotes the
pseudo-inverse. PCA focusing on the tongue outline
is applied on the modified dataset. We also find the
contribution of the these components to the epiglot-
tis, in the same way we found the contribution of the
jaw opening to the tongue. The first four resulting
factors are shown in Fig. 5. It is interesting to note

Figure 5: First four tongue components (after re-
moval of the contribution of the jaw)

that the first three tongue factors associate well with
the tongue factors of Maeda’s model: tongue dor-
sum position, tongue dorsum shape, tongue tip (the
latter encoding also some deformation at the tongue
root, as in Maeda’s model).

3.3. Lips

We subtract the contribution of jaw factor f1 from
the data, and apply PCA focused on the lips. The
first two factors thus derived are shown in Fig. 6.
The first of these factors can be associated to lip
opening and the second to lip protrusion.

Figure 6: First two lip components (after removal
of the contribution of the jaw)

3.4. Velum

We apply PCA focused on the velum. The first com-
ponent captures more the 75% of the variance and is
associated to velum lowering. Subsequent compo-
nents appear to capture linguistically non-important
deformations (Fig. 7).

Figure 7: First two velum components

3.5. Larynx

We apply PCA focused on a small number of points
that outline the arytenoid cartillages (Fig. 8). The
first component captures can be associated to voic-
ing, given that when that the more the cartillages
approach, the more prominent they are on the mid-
sagittal MRI slice. The second component asso-
ciates well to larynx height.

3.6. Hard palate

An inherent problem with rtMRI and the automatic
segmentation method is that it fails to properly dif-
ferentiate between the hard palate and the tongue tip.



Figure 8: First two larynx components

This results to observing a deformation of the hard
palate outline. Applying PCA on the hard palate out-
lines gives the factors shown in Fig. 9.

Figure 9: Hard palate factors (as a result of inher-
ent problems of rtMRI and segmentation).

3.7. Compact representation and reconstruction

Articulatory outlines of any frame in the dataset can
be approximated by a weighted sum of the previ-
ously derived factors: a = ∑i wi fi. While the factors
(vectors) fi are constant across the dataset, the set of
weights (scalars) wi is dynamic and can be used as
a compact representation of the vocal-tract outlines.
Fig. 10 shows trajectories of the weights associated
with four of the presented factors along an utterance
from the dataset. The weight of the jaw opening
presents a rhythmic pattern; the tongue dorsum po-
sition weight is largely correlating with fronting; the
velum weight has peaks at nasals; and the voicing
weight presents peaks for unvoiced segments.

Given the factors, vocal-tract outlines can be re-
constructed from the weights. Fig. 11 shows a re-
construction using the factors of Figs. 4-9 with the
exception of the left panel of Fig. 4 and the right
panel of Fig. 7. The approximation is in all satis-
factory, retaining salient features of the vocal-tract
shaping. We note that we had to include the hard
palate factors (which of course are not linguistically
or physiologically relevant) otherwise we would not
get right the constriction for alveolar stops and frica-
tives. Correcting this problem is something we in-
tent to look further into.

Figure 10: Trajectories of weights associated
with factors: (from top to bottom) jaw opening;
tongue dorsum position; velum; and voicing

Figure 11: Left: Result of segmentation (same
as in Fig. 1, left. Right: reconstruction from 12
factors.

4. CONCLUSION

We have presented a method to derive compact
representations of vocal-tract outlines automatically
tracked on rtMRI sequences, as a linear combina-
tion of (mostly) linguistically interpretable vocal-
tract deformations. The analysis was illustrated us-
ing data drawn from 250 sentences spoken by an
American English speaker. The results underscore
the promise of the method. There are however limi-
tations that need to be further addressed. The study
has been speaker- and recording session- specific,
and thus does not lead to a general-purpose articula-
tory model. Further generalizations will be required,
which is among our future work plans, alongside ex-
ploring the utility of our current analysis for phono-
logical analysis and articulatory synthesis.
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