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ABSTRACT 

 

In likelihood ratio (LR)-based forensic speaker 

comparison it is essential to consider correlations 

between parameters to accurately estimate the 

overall strength of the evidence. Current approaches 

attempt to deal with correlations after the 

computation of LRs (back-end processing). This 

paper explores alternative, front-end techniques, 

which consider the underlying correlation structure 

of the raw data. Calibrated LRs were computed for a 

range of parameters commonly analysed in speaker 

comparisons. LRs were combined using (1) an 

assumption of independence, (2) the mean, (3) 

assumptions from phonetic theory, and (4) empirical 

correlations in the raw data. System (1), based on an 

assumption of independence, produced the best 

validity (Cllr = 0.04). Predictably, overall strength of 

evidence was also highest for system (1), while 

strength of evidence was weakest using the mean 

(2). Both systems (3) and (4) performed well 

achieving Cllr values of ca. 0.09. 

Keywords: Likelihood ratio, forensic speaker 

comparison, correlations, front-end processing 

1. INTRODUCTION 

Forensic speaker comparison (FSC) typically 

involves the analysis of a recording of the voice of a 

known suspect (e.g. police interview) and a 

recording of the voice of an unknown offender (e.g. 

bomb threat). The auditory-acoustic (AuAc) method 

is most commonly used for the analysis of samples 

in such cases [7]. The AuAc method involves a 

componential analysis of a wide range of segmental, 

supra-segmental, linguistic and non-linguistic 

parameters (see [5]), in which analytical listening is 

combined with quantification through acoustic 

analysis. Consistent with developments across the 

forensic sciences (led by DNA analysis), there is an 

increasing consensus that FSC evidence should be 

interpreted and evaluated using the likelihood ratio 

(LR) framework. The LR provides a gradient 

assessment of the strength of the evidence based on 

its probability under the competing propositions of 

prosecution and defence. Over the last 15 years there 

has been a considerable amount of research 

considering the application of the numerical LR to 

the evaluation of speech recordings in FSC.  

However, as highlighted in [8], there remain a 

number of difficulties associated with the 

application of the fully data-driven, numerical LR 

approach in FSC, due to the inherent complexity of 

speech as a form of evidence. One such issue is how 

to combine LRs from individual parameters into an 

overall LR (OLR). Naïve Bayes [10] allows LRs 

from individual parameters to be combined using 

simple multiplication if each piece of evidence is 

independent of the other. Unfortunately, with naïve 

Bayes, there is a high risk of doubling the same 

evidence if correlated parameters are considered in 

the evaluation. This is of particular importance in 

FSC given that speech parameters are known to 

display a highly complex correlation structure due to 

biological, articulatory and sociolinguistic factors. 

In the absence of techniques for combining LRs, 

early FSC LR research applied naïve Bayes 

irrespective of the correlations in the raw data [e.g. 

15]. More recently, logistic regression fusion [4] has 

been used; a method developed in the field of 

automatic speaker recognition (ASR) for combining 

the results of different ASR systems. Fusion is a 

form of back-end processing which considers 

correlations in the resulting LRs rather than 

correlations in the raw input data. Therefore, as 

suggested by Rose “it is … possible … that two 

segments which are not correlated by virtue of their 

internal structure and which therefore should be 

naïvely combined, nevertheless have LRs which do 

correlate” [14]. Equally the reverse is possible, 

whereby correlated parameters generate non-

correlated LRs.  

Therefore, it is preferable, and linguistically more 

appropriate, to consider correlations prior to the 

computation of LRs. We refer to this approach as 

front-end processing. This paper considers 

alternative front-end approaches to dealing with 

correlations and assesses their effects on LR output. 

Parallel sets of LRs were computed using the same 

36 Standard Southern British English (SSBE) 

speakers for a wide-range of phonetic parameters 

commonly analysed in FSC. The LRs were then 

combined using four methods. Firstly, OLRs were 

generated using a naïve Bayes assumption of 

independence between all parameters. This was 



intended to serve as a baseline for the least 

conservative strength of evidence by considering all 

possible parameters, irrespective of existing 

correlations. Secondly, OLRs were calculated as the 

mean of the LRs for each parameter. Thirdly, 

phonetic theory was used to predict which 

parameters should be correlated in order to identify a 

subset of the best performing independent 

parameters. These were then combined using naïve 

Bayes. Finally, correlations between all parameters 

were tested empirically. This information was used 

to identify a subset of the best performing 

independent parameters, which were then combined 

using naïve Bayes. The systems were compared in 

terms of the magnitude of the resulting OLRs and 

their validity, evaluated using the log LR cost (Cllr) 

function [3]. 

2. METHOD 

2.1. Database and speakers 

Data were drawn from Task 1 & 2 recordings for 36 

male speakers of SSBE, aged 18-25 from the DyViS 

[13] database. In Task 1 participants were 

questioned in a mock police interview. Task 2 

involves the same speakers discussing the same 

mock crime over the telephone with an 

„accomplice‟. Task 2 data were extracted from the 

direct recording, rather than the telephone recording. 

Both tasks were used for the analysis of parameters 

based on the availability of existing data. 

2.2. Parameters, features and data extraction 

In order to reflect practise in real casework, a wide 

range of parameters were included in the analysis. 

Data for a number of parameters had already been 

extracted for the 36 target speakers as part of 

previous research using DyViS. The following 

parameters were available: 

 Articulation rate (AR): mean syllables/sec [6] 

(Task 2) 

 Fundamental frequency (f0): mean & standard 

deviation (SD) [6] (Task 2) 

 Long-term formant distributions (LTFDs): 

F1~F4 [6] (Task 2) 

 Hesitation markers UH („err‟) & UM („erm‟):  

F1~F3 midpoint (+50%) [16] (Task 1) 

 /aɪ/: F1~F3 +20% and +80% point of the 

trajectories [9] (Task 1) 

Additionally, the following parameters were added: 

 Word-initial /t k/: VOT (ms) & closure 

duration (ms) (Task 2), 

 /a uː ɔː/: F1~F3 midpoint (+50%) (Task 1). 

VOT and closure durations were extracted using 

PRAAT by identifying the onset and offset of the 

hold and release phases of initial /t k/ tokens, as well 

as the onset of periodicity in the following vowel. 

Similarly, vowel tokens were hand-segmented in 

PRAAT. Tokens were excluded from the analysis if 

they occurred adjacent to liquids /l r w/ or in 

unstressed syllables. Following [11], formant 

measurements were taken at +10% steps using a 

script set to identify between 5 and 6 formants 

within a 0-5000 Hz range. The +50% measurement, 

the temporal midpoint, from each formant was used 

as input. 

2.3. LR computation 

The 36 speakers were divided into two sets of 18 

speakers to act as development and test data. The 

same speakers were also used as reference data. 

Each dataset for each speaker was also divided in 

half to create two sets, which acted as mock suspect 

and offender data, allowing for same speaker 

comparisons. For each parameter, cross-validated 

LR scores were computed using a MATLAB 

implementation [12] of Aitken and Lucy‟s [1] 

multivariate kernel density (MVKD) formula for the 

development and test data. For each comparison, the 

reference data consisted of 34 speakers. Scores for 

the development data were used to generate 

calibration coefficients using logistic regression [3] 

which were applied to the test scores to convert them 

to calibrated LRs (LRs). This produced parallel sets 

of calibrated same-speaker (SS; 18) and different-

speaker (DS; 306) LLRs for each set of input data. 

System validity was assessed using the log LR cost 

function (Cllr) [3], which penalises the system for the 

magnitude, rather than proportion, of contrary-to-

fact LRs. 

2.4. Systems 

Four front-end approaches were used to handle 

correlations between parameters. For each system, 

different combinations of parameters were used to 

generate the OLRs. 
 
2.1.1. System (1): Naïve Bayes 
 
Following the naïve Bayes approach, OLRs were 

generated by taking the product of the LRs for each 

parameter for each comparison. This approach is 

expected to overestimate the strength of evidence 

(relative to methods which consider the correlation). 

It was included here to serve as a baseline for 

comparison with the other systems (i.e. better/worse 

performance). 



2.1.2. System (2): Mean 

In System (2), OLRs were calculated as the mean of 

individual LRs for each parameter for each 

comparison. Relative to the naïve Bayes approach 

(System (1)), the mean was expected to produce 

markedly weaker strength of evidence. 

2.1.3 System (3): Phonetic theory 

System (3) was based on predictions from phonetic 

theory about the correlation structure of the 

parameters analysed. Firstly, temporal parameters 

were predicted to be dependent on AR, such that 

faster speech should produce shorter segmental 

durations. Thus, the temporal parameters related to 

initial /t k/ were removed. Secondly, although source 

and filter information are predicted to be 

independent of each other, evidence from [2] 

suggests that f0 and F1 are correlated, particularly in 

Lombard speech (such as that used when speaking 

on the telephone). Therefore, f0 was included in the 

analysis and F1 omitted. F1 was removed since it is 

also typically compromised by telephone trans-

mission in forensic cases. Finally, all of the 

segmental vocalic formant data was expected to be 

correlated with the LTFDs, since the LTFDs already 

contain all of the segmental vowel data, providing 

information about the vowel system and the shape 

and size of the entire vowel space. The resulting 

system consisted of: 

 AR, f0 (mean & SD), and LTFD (F2~F4) 

These parameters were modelled as multivariate 

data using MVKD (i.e. including all features of each 

parameter) and then combined, as in System (1), by 

taking the product of the LRs for each comparison. 

These parameters were combined using naïve Bayes 

since they were, based on predictions from phonetic 

theory, expected to be independent of each other. 

2.1.4. System (4): Empirical correlations in the data 

System (4) was based on empirical correlations 

calculated from the raw data itself. Mean values by-

speaker were calculated for each feature of each 

parameter. A Spearman correlation matrix was then 

generated to identify features which correlate for this 

population. A conservative (i.e. low) accept-reject 

threshold of r = 0.25 was chosen to determine the 

independence/dependence of pairs of parameters. 

Such a conservative threshold was used to capture 

all of the meaningful correlations in the data, even if 

this meant assuming some features were correlated 

when they were not. Hierarchical cluster analysis 

was then used to arrange pairs of features according 

to the strength of their correlation. Starting with the 

strongest correlations, the feature with the best 

validity (i.e. lowest Cllr) was chosen for further 

consideration in the system. The outcome of this was 

ten features with the best validity, which were also 

empirically shown to be uncorrelated. The resulting 

system consisted of: 

 f0 (mean), LTFD (F3 & F4) , UH (F1), UM 

(F2), word-initial /t/ (VOT & closure 

duration), /a ɔː/ (F2), and /uː/: (F3) 

As with the other systems, the LRs from these 

individual features were combined using simple 

multiplication to generate OLRs. 

2.5. Evaluation 

The four systems were compared in terms of the 

magnitude of the OLRs which had been converted to 

log LRs (LLRs) using a base-10 logarithm. Since the 

distributions of LLRs are generally skewed, the 

median was used as a measure of the central 

tendency. The validity of the four systems was 

compared using the Cllr for the OLRs.  

3. RESULTS 

Figure 1 displays the tippett plot of calibrated 

overall log10 LRs (OLLRs) for each of the four 

systems tested. The largest differences were found 

between the naïve Bayes (1) and mean-based (2) 

systems, while the outputs of Systems (3) and (4) 

were very similar. Predictably, the highest 

magnitude SS and DS OLRs were produced by 

System (1) where all of the parameters were 

included and considered independent of one another. 

Compared with the median SS OLLR of +6.6 

produced by System (1), the System (2) SS median 

was six orders of magnitude weaker while the 

medians based on theoretical (3) and empirical (4) 

correlations were four orders of magnitude weaker.  
The differences across the systems were greater 

for DS pairs. The DS median for System (1) was -

24.5 compared with just -2.2 for System (2), -10.7 

for System (3) and -10.9 for System (4). Such 

differences highlight the potential for overestimating 

the strength of evidence when applying naïve Bayes 

without considering the expected, or actual, 

correlations in the data. Further, the low median 

LLRs produced by System (2) suggest that the mean 

provides overly conservative estimations of the 

strength of the evidence. Despite using different 

input variables, the output from the theoretical (3) 

and empirical (4) systems is very similar, suggesting 

that they both account for the correlation structure of 

the underlying data in similar ways.  

Figure 2 displays Cllr values for each of the four 

systems. Overall, the four systems outperformed any 



Figure 1: Tippett plot of calibrated OLRs from the 

four systems using different front-end techniques 

to account for correlations between parameters. 

 
 

single parameter in terms of validity (e.g. LTFD 

(F1~F4) had the best validity of any individual 

parameter; Cllr = 0.24). The system with the best 

validity was System (1), based on naïve Bayes (Cllr = 

0.038). System (2), based on the mean generated the 

poorest validity (Cllr = 0.226). As in Figure 1, the 

output of Systems of (3) (Cllr = 0.085) and (4) (Cllr = 

0.089) was very similar, although validity was 

marginally better when considering theory-based 

rather than empirical correlations. 

Figure 2: Cllr for the four systems using front-end 

techniques to account for correlations. 

 

4. DISCUSSION 

As predicted, the results from the naïve Bayes 

system provided overestimations of the strength of 

evidence (see Figure 1). Statistically, System (1) 

offered the lowest Cllr, which is attractive in terms 

of system performance. However, System (1) 

includes portions of duplicated evidence, as pre-

testing for Systems (3) and (4) showed that there are 

predictable correlations in the raw data which are 

borne out through empirical testing. From an 

empirical and ethical perspective, this means that 

System (1) may not be the most appropriate method 

for combining correlated evidence, despite the 

promising system performance. 

In contrast to System (1), System (2) provides 

overly conservative estimations of strength of 

evidence, dominated by the larger number of poorer 

speaker discriminants (e.g. AR SS comparisons) 

which produce counter-factual LRs or and ones 

much closer to threshold. 

The output of Systems (3) and (4), based on 

theoretical and empirical assessments of the 

correlation structure of the raw data, was found to be 

very similar in terms of both the magnitude of the 

OLRs and system validity. This suggests that, 

despite using different input parameters, these two 

front-end approaches account for correlations in 

similar ways, and to similar extents. Compared with 

System (1) the theory- and empirical-based 

approaches provide more conservative, more 

appropriate, assessments of strength of evidence. 

Further, compared with System (2), the output of 

Systems (3) and (4) was not overly conservative.  

5. CONCLUSION 

In terms of the front-end approaches currently 

available, we consider it preferable to account for 

correlations using predictions based on phonetic 

theory or empirical testing of the raw data since 

these approaches does not appear to under- or 

overestimate the strength of evidence in the way that 

naïve Bayes or the mean do. The research presented 

in this paper has a number of important implications 

for FSC. Firstly, the results highlight the complexity 

of the correlation structure of speech evidence and 

the potential effects of different front-end 

approaches to deal with this complexity. Secondly, 

the fact that the four systems outperform any single 

parameter in terms of Cllr emphasises the value of a 

componential approach to FSC based on all of the 

parameters available to the expert. 
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