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ABSTRACT 
 
Apraxia of Speech (AOS) is a motor speech disorder 
whose precise nature is still poorly understood. A recent 
behavioural experiment featuring a noise masking 
paradigm suggests that  AOS reflects a disruption of 
feedforward control, whereas feedback control is spared 
and plays a more prominent role in achieving and 
maintaining segmental contrasts [10]. In the present 
study, we set out to validate the interpretation of AOS as a 
feedforward impairment by means of a series of 
computational simulations with the DIVA model [6, 7] 
mimicking the behavioural experiment.  

Simulation results showed a larger reduction in vowel 
spacing and a smaller vowel dispersion in the masking 
condition compared to the no-masking condition for the 
simulated feedforward deficit, whereas the other groups 
showed an opposite pattern. These results mimic the 
patterns observed in the human data, corroborating the 
notion that AOS can be conceptualized as a deficit in 
feedforward control. 
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modelling; vowel acoustics; feedback masking. 

1. INTRODUCTION 

Apraxia of speech (AOS) is a neurogenic motor speech 
disorder resulting from brain lesions to the left cerebral 
hemisphere, although more specific lesion locations 
reported in the literature diverge [4, 8, 18, 19]. The 
speech of patients with AOS is characterized by slow 
speech rate, abnormal prosody, abnormal speech sound 
and syllable segmentation, speech sound distortions, 
and speech errors that are inconsistently present but 
relatively consistent in type and location [5, 15]. From 
a functional point of view, AOS is defined as an 
impairment in the planning and/or programming of 
speech movements [3, 5, 11, 13, 23], however, the 
precise nature of the disorder remains poorly 
understood.  

One of the main difficulties in isolating the 
underlying deficit(s) is diagnostic circularity. The 
ability to investigate the characteristics underlying 
AOS requires ‘pure’ cases of AOS selected on the 
basis of unambiguous/clear-cut criteria, which are only 
available as a result of research. As lesion inducing 
medical accidents such as strokes, brain injuries, or 
tumors rarely produce isolated and one-dimensional 

deficits, pure cases are rare and symptom profiles show 
considerable variation between individuals and a large 
overlap in symptomatology with other speech 
disorders. Additionally, when confronted with a partial 
breakdown, the speech system itself is likely to adapt 
to the deviant circumstances and/or compensate for the 
impediments, and individuals may vary widely in these 
adaptive and compensatory mechanisms.  

This problem of practical-diagnostic circularity 
results from the behavioural, symptom-oriented 
approach that is employed [14, 21]. Although the 
symptomatology might be aspecific, it is possible to 
describe a specific speech-motor core deficit from the 
perspective of the underlying cognitive and 
neurological processes. As such, we argue that to 
identify underlying deficits, one must begin by 
deriving detailed, specific hypotheses within the 
context of a detailed model of the behavioural and 
cognitive operations involved. These hypotheses 
should then be tested empirically, and ideally 
contrasted with alternative hypotheses for underlying 
deficits (e.g., those presumed to underlie 
‘neighbouring’ impairments such as dysarthria) [21].  

One promising, and relatively recent approach to 
understanding AOS in this respect, relates to the 
development of the DIVA model, a computationally 
implemented neural network model of speech 
acquisition and speech motor control [6, 7]. The main 
function of computational modelling is to understand 
the effects of a particular underlying deficit. Currently, 
clinicians tend to interpret symptoms at face validity 
(e.g. errors in place of articulation as resulting from 
motor programming errors). By deductive reasoning, 
modelling allows us to test such interpretations 
directly, thereby giving us a powerful tool for 
validating inductive reasoning (from symptom to 
deficit) [20, 21]. In the current study, we utilized this 
modelling approach and investigated the potential role 
of two deficits that have been hypothesized to underlie 
AOS [10] in Simulink DIVA [16], a computational 
implementation of the DIVA model.  

2. OVERVIEW OF THE DIVA MODEL 

The DIVA model consists of a neural network 
controller detailing feedforward and feedback control 
loops that are assumed to be involved in early speech 
development and mature speech production, focusing 



on the sensorimotor transformations underlying the 
control of articulator movements [6, 7]. The model 
strives to be neurobiologically plausible and its 
components have been associated with regions of the 
cerebral cortex and cerebellum [7]. In order to produce 
an acoustic signal, DIVA controls the movements of an 
articulatory synthesizer [12].  

In the DIVA model, production of a speech sound 
begins with activation of a speech sound map (SSM) 
cell in left inferior frontal cortex. SSM cells represent 
speech sounds (which may range in size from 
phonemes, to syllables, to frequent words and phrases) 
and are presumed to be activated by higher-level input 
from the phonological encoding stage [2, 7]. The 
activated SSM cell then activates a feedforward control 
system and a feedback control system, whose motor 
commands are combined in primary motor cortex. 
Feedback control involves comparing actual auditory 
and somatosensory feedback signals to expected 
auditory and somatosensory consequences, and 
generating corrective motor commands to motor cortex 
when a mismatch (error) is detected. Expected sensory 
consequences are encoded as regions in auditory space 
(superior temporal gyrus) and somatosensory space 
(postcentral and supramarginal gyri). Feedforward 
control involves predictive motor commands from the 
SSM to motor cortex. Feedforward commands are 
learned by incorporating the feedback system’s 
corrective commands from previous productions. With 
sufficient practice, the feedforward commands generate 
little to no errors, so that contributions of the feedback 
control system are minimal during normal speech, 
although feedback may be continuously monitored for 
deviations from expectations, even in adult speakers 
[22]. 

3. THE PRESENT STUDY 

As noted above, the current consensus is that AOS is 
defined as a speech motor planning and/or 
programming disorder, or, more specifically, an 
inability to transform an abstract linguistic code 
involving intact phonological representations into 
spatially and temporally coordinated patterns of muscle 
contractions that produce speech movements [9, 11, 
15]. Within this accepted consensus, Maas et al. [10] 
proposed two alternative hypotheses with respect to the 
underlying mechanisms. One suggestion was that the 
underlying (core) deficit in AOS may be viewed as one 
of impaired feedforward control (Feedforward System 
Deficit Hypothesis; FF hypothesis). The disruption in 
feedforward processing would cause the motor 
commands to be inappropriate or underspecified, 
thereby introducing errors, which in turn would 
increase the contribution of feedback-based corrective 
commands to the overall motor command. In other 
words, according to the FF hypothesis the speech 
system would show an increased reliance on feedback 
control and the role of feedback control would be 

facilitatory in achieving and maintaining segmental 
contrast in AOS.  

The other suggestion was that AOS may involve 
impaired feedback control (Feedback System Deficit 
Hypothesis; FB hypothesis). In this case, the disruption 
of feedback processing would be in deriving error 
information from mismatching feedback and/or 
generating corrective commands on the basis of such 
errors, for example because incorrect target regions are 
activated, because the internal model that governs 
corrections is damaged, or because feedback 
commands cannot be integrated with feedforward 
commands.  

Maas and colleagues [10] investigated these two 
hypotheses in a behavioural experiment featuring an 
auditory feedback masking paradigm. The rationale is 
that noise masking effectively prevents auditory 
feedback control, forcing reliance on feedforward 
control (and somatosensory feedback control). If the 
feedforward system is impaired, and people with AOS 
rely primarily on auditory feedback control to maintain 
segmental contrast, then such removal of auditory 
feedback would reveal the – impaired – feedforward 
system. On the other hand, if symptoms of AOS reflect 
interference from the auditory feedback signal (e.g., 
due to generating unnecessary or inadequate corrective 
commands), then removing the auditory feedback 
should improve speech performance in terms of 
segmental contrast and stability.  

Findings from vowels produced by six speakers 
with AOS revealed that vowel spacing (acoustic 
contrast) was more reduced under noise conditions 
than in control speakers, consistent with the hypothesis 
of a feedforward deficit. In addition, a marginal 
interaction between group and condition emerged for 
vowel dispersion (the token-to-token variability of a 
vowel around its mean location in F1 x F2 space [17]), 
hinting at greater dispersion for the AOS group than 
the controls in the clear (no-masking) condition but 
comparable dispersion in the noise condition. This 
pattern would be expected if speakers with AOS rely to 
a greater extent than controls on auditory feedback 
control, which tends to be more variable due to on-line 
corrections to the motor commands. In conclusion, 
these findings provide support for the notion of an 
impaired feedforward control system in AOS [10]. 

In the present study, we set out to investigate the 
interpretation of AOS as a feedforward impairment 
further by means of a series of computational 
simulations mimicking the experiment of auditory 
feedback masking in speakers with AOS by Maas and 
colleagues [10].  

4. DIVA SIMULATIONS 

4.1. Experimental paradigm 

Modified versions of the Simulink DIVA model [16] 
were derived from a pre-trained model that in its 



‘healthy’ state produces stable, mature output for the 
targets that it is tested against. These targets were the 
same as those used in the Maas et al experiment [10]; 
namely /bVt/ tokens, which are reliably synthesised 
with the Maeda [12] articulatory synthesiser. 

In the masking condition, no auditory feedback was 
provided to the model from the articulatory 
synthesiser. Each impairment × masking condition pair 
was captured in a separate, appropriately modified 
implementation of the model. Additionally, a third 
condition, severity, parametrically varied the degree of 
signal degradation caused by the impairments, at three 
levels (5%, 10%, 15%). 
 
4.2 Feedforward impairment condition 
 
The hypothesised feedforward deficit was modelled by 
creating two separate speech sound map components, 
one connected to the feedback systems and one 
connected to the feedforward system. The output to the 
feedforward system (cerebellum and articulatory and 
position velocity maps) was distorted by (1) cancelling 
activation of a random subset of cells and (2) adding 
random, signal-independent noise. The activation in 
these cells represents on a binary level the activation 
state of the neurons that link to synaptic networks 
encoding the weightings of individual productions. 
Higher levels of the severity condition resulted in a 
greater percentage of activation-cancellation, and a 
higher level of signal-independent noise. 
 
4.3 Feedback impairment condition 
 
Two different feedback deficits were modelled, one as 
a disruption prior to, and one as a disruption after, the 
integration of feedback and feedforward commands in 
motor cortex; in both cases, the feedback deficit was 
simulated by the same mechanism: adding random 
signal-independent noise to the feedback-based error 
signals (one per auditory dimension), which are 
derived from discrepancies between intended and 
actual speech targets. The noise was the form of a 
random multiplier between 0 and 2 applied arbitrarily 
to a number of the error feedback signals, in proportion 
to the severity level. 
 
4.4 Target items 
 
The target items that the model produces are specified 
by various time-aligned minimum and maximum 
limits; in Hz for F0 and the vowel formants; and on an 
arbitrary -1 to 1 scale for the articulatory dimensions of 
pressure, voicing, and closure at pharyngeal, uvular, 
palatal, alveolar-dental and labial places of articulation. 
Vowel formant targets were derived from 95th and 5th 
percentile LPC from twenty natural productions of 
each vowel. The articulatory targets for the consonants 
were derived from sample target items distributed with 
the computational DIVA model. All the items were 

time-normalised; meaning vowel onset and offset times 
were the same in all items. 
 
4.5 Simulation procedure 
 
Forty-one repetitions were performed of each the 
possible combinations of conditions: item × group 
(impairment) × masking × severity.  Ten simulation 
cycles of each condition combination were performed, 
to allow the performance of the model to stabilise in its 
new, impaired condition. The productions of the tenth 
cycle were stored as WAV files for analysis. 
 
4.6 Acoustic analysis 
 
Acoustic analysis was conducted in Praat [1] using a 
customised script. First, the vowel component of each 
output item was identified based on the intensity 
contour. Items where the longest of these detected 
potential vowels was shorter than 5 analysis frames 
(0.125s), or whose mean intensity was below the 10th 
percentile of the whole dataset were excluded. A 
sample (n = 40) of the remaining tokens were manually 
inspected; no errors were found.  

Formants were then measured in each item using 
LPC analysis and converted to Mel-space. LPC 
settings were tuned manually. A median value for each 
formant was calculated, and items where the variability 
in pitch measurements within any one formant was 
above the 95th percentile of the whole dataset were 
additionally excluded. 

As in Maas et al. [10], vowel spacing was 
calculated as the mean Euclidean distance between the 
means of each possible pair of vowels. Vowel 
dispersion was calculated as the average of the 
Euclidian distances between each vowel token and that 
vowel’s mean. 

5. RESULTS & DISCUSSION 

5.1 Average vowel spacing 
 
Figure 1 presents the results on average vowel spacing, 
demonstrating a reduced vowel space in the masking 
condition compared to the no-masking condition in all 
the group (impairment) × severity conditions. The 
effect is most pronounced for the feedforward deficit 
simulations. 

An ANOVA revealed no main effect for group, 
indicating that the different impaired models did not 
differ from each other or the unimpaired model overall. 
Comparisons within each impairment revealed that the 
difference between the masking and non-masking 
conditions was highly significant for the feedforward 
deficit group; F(1,93) = 102.12 p = 0 ***. In contrast 
to Maas et al. [10], there was still an effect for 
condition within the healthy control group, but the 
effect was smaller than for the feedforward deficit 
group; F(1,82) = 10.08 p = 0.0021 **. The interaction 



of model and condition was very highly significant; 
F(1,177) = 11.76 p = 8e-04 ***. For the feedforward 
deficit model, there is a statistically significant 
interaction of severity of the deficit and condition; 
F(3,91) = 3.67 p = 0.0153 *. This was not the case for 
either of the feedback deficit models, nor was there a 
model x condition interaction for the feedback 
conditions.  
 

Figure 1: Average vowel spacing by impairment 
and severity 

 
 
5.2 Vowel dispersion 
 
Results on average vowel dispersion are presented in 
Figure 2, demonstrating a smaller vowel dispersion in 
the masking condition compared to the no-masking 
condition for the simulated feedforward deficit, 
whereas the other groups showed an opposite pattern 
(greater vowel dispersion in the masking condition 
compared to the no-masking condition).  
 

Figure 2: Average vowel dispersion by 
impairment and severity 

 
 
Maas and colleagues [10] found a marginal effect 

for impairment group on vowel dispersion, and a 
marginal group (impairment) × condition interaction. 
In this investigation, we find a highly significant effect 
for impairment when comparing the feedforward 
impaired model and the healthy model; F(1,81) = 61.5 
p = 0 ***. Interpretation of this main effect is 
superseded by a small impairment × condition 

interaction effect; F(1,81) = 4.75 p = 0.0323 *. 
Examining only the feedforward model finds no effect 
for condition, however; F(1,41) = 1.97 p = 0.1685, 
meaning that the interaction effect is driven by the 
difference in the healthy model rather than that in the 
feedforward model. 

For the feedback models and the control model, 
there is a significant interaction effect of model × 
condition on vowel dispersion F(2,122) = 4.68 p = 
0.0111 *, indicating a disproportionate increase in 
dispersion with masking for the feedback deficit 
models. 

When the no-masking outputs of the models are 
compared, there is a highly significant effect for 
impairment type (across all models, F(3,91) = 36.67 p 
= 0 ***). Looking only at the feedforward deficit and 
control models, there is again a very highly significant 
effect; F(1,45) = 43.58 p = 0 ***. The interaction with 
severity is also significant; F(3,43) = 3.39 p = 0.0273 
*. There is also a very highly significant effect looking 
at the control and feedback deficit 1 models; F(1,46) = 
18.52 p = 1e-04 ***, but for the control and feedback 
deficit 2 models, there is no effect; F(1,46) = 0.05 p = 
0.8328. 

6. CONCLUSIONS 

Results from the simulations support the interpretation 
of the human observations, in that the model with the 
simulated feedforward deficit demonstrated a 
disproportionate reduction in acoustic vowel contrast 
compared to the intact model. Although the simulated 
feedback deficits also resulted in a reduction of 
acoustic vowel contrast with masking, this magnitude 
of this reduction did not differ from that in the intact 
model.  

In addition, with respect to vowel dispersion the 
simulations revealed a small group x condition 
interaction such that vowel dispersion was greater in 
the clear (no-masking) condition than in the masking 
condition for the simulated feedforward deficit, 
whereas the intact model (and the feedback deficit 
models) showed, numerically, an opposite pattern 
(greater dispersion in the masking than in the clear 
condition). Again, this pattern mimics the patterns 
observed in the human data, corroborating the notion 
that AOS can be conceptualized as a deficit in 
feedforward control.  
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