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ABSTRACT

It is often assumed that the participants of a con-
versation try to avoid simultaneous starts or lengthy
silences. For this reason, they may tend to synchro-
nize rhythmically with each other’s speech. A model
of conversational turn-taking based on the idea of
coupled oscillators has been suggested by Wilson &
Wilson [1]. However, the model has received only
weak empirical support from previous studies where
distributions of silence durations have been modeled
directly. In the present study, we attempt to detect
signs of oscillatory behavior during silence utiliz-
ing nonparametric hazard regression. In order to un-
derstand the shape of the estimated hazard rates, we
postulate a latent stochastic process [2] with end of
silence occurring when the process crosses a thresh-
old. This finer-grained approach using Bayesian es-
timation yields a more detailed picture of synchro-
nization between speakers and a more powerful test
of oscillatory behavior.
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1. INTRODUCTION

Wilson & Wilson [1] (hereafter W&W) suggested
a turn-taking model based on coupled oscillators.
Beňuš [3] tested several predictions of this model
against a database of conversational American En-
glish, and O’Dell et al. [4] used a similar analysis
for a Finnish database. In both cases results pro-
vided some support for the model, but support was
weak due to small correlations, and a mismatch of
latencies predicted by W&W.

It is often assumed that speakers (a) avoid start-
ing to speak at the same time, and (b) avoid lengthy
silence. These goals are somewhat contradictory,
since lengthy silence in itself would diminish the
risk of simultaneous starts. Indeed, this is part of
the motivation for the W&W model: they postulate
that each speaker maintains the syllable oscillations
of speech during a following silence in order to stay
synchronized and thereby avoid simultaneous starts
even without lengthy periods of silence.

But just how useful is oscillatory behavior during

silence? During short periods of silence synchro-
nized oscillation could help to avoid simultaneous
starts. As silence continues, however, it is obvious
that between speaker synchrony will deteriorate. At
the same time, it will also be less needed, since the
risk of simultaneous starts will diminish in any case
as time goes on. Thus, along with W&W, we might
expect a trade-off between short silence with oscil-
lations vs. longer asynchronous lapses. W&W sug-
gest “Exactly how long it takes for the cycling [ . . . ]
to break down is unclear, but it is probably a matter
of a few seconds.” [1].

The present research uses a different statistical
technique, Bayesian nonparametric hazard regres-
sion, to elucidate these issues. Do syllable rhythms
continue during silence? If so, for how long and for
how many cycles? How does speaker behavior differ
depending on which speaker initiated silence? (In
what follows we adhere to the terminology of [5] for
the sake of brevity: pause refers to within-speaker
silence and gap refers to between-speaker silence.)

2. CORPUS AND METHODS

2.1. Finnish Dialogue Corpus

The Finnish Dialogue Corpus [6] consists of in-
formal unscripted dialogues with pairs of young
Finnish adults recorded in an anechoic room. The
participants in each dialogue were close friends and
they were allowed to chat freely and unmonitored
for a total of 40 to 60 minutes on either given or self-
selected topics. Speakers sat a few meters apart fac-
ing opposite directions. Each speaker’s speech was
recorded to a separate channel of a DAT recorder us-
ing high-quality headset microphones. The recorded
material was then transferred to a computer and sam-
pled at 22050 Hz. The two channels of the stereo
files were separated, resulting in one audio file per
speaker.

Four speaker pairs were analyzed for the present
study. Each speaker’s utterances were orthograph-
ically transcribed and silence (including short hesi-
tations), words, syllables and morae were annotated
for each speaker using Praat [7].



Figure 1: Turn chart for part of speaker pair F6/F7
dialogue, and schematic showing types of silence.
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2.2. Hazard regression for silence

The hazard function λ (t) in survival analysis in-
dicates the risk of an event (end of silence in the
present case) occurring at time t, given that the event
has not occurred earlier. This differs from the more
familiar probability density function, which is not
conditional on (lack of) previous occurrence.

Estimating the hazard rate from empirical dura-
tion data provides an alternative to empirical density
estimation which is more sensitive to potential oscil-
latory behavior. Hazard functions can be estimated
in several ways. Here we use the Linear Depen-
dent Dirichlet Process Mixture of Survival models
[8], which is a form of Bayesian nonparametric haz-
ard modeling allowing the inclusion of covariates,
such as syllable rate for the speech preceding si-
lence. All hazard functions and statistics were com-
puted with the DPpackage function LDDPsurvival
[9] in R [10].

In estimating the risk of a speaker starting to
speak it is important to take into account the cases
when the other speaker starts instead. For instance,
if speaker B starts speaking after silence, we don’t
know how long speaker A would have continued to
wait before initiating speech, but the observed si-
lence does provide a lower bound. This is called
right censoring in survival analysis.

3. RESULTS

3.1. Hazard functions without covariates

Hazard rates estimated without covariates are plot-
ted in Fig. 2. Hazard rates for pause (dashed in
Fig. 2) start at zero, while hazard rates for gap (solid)
are positive even at time zero, meaning there is some
chance of (near) simultaneous turn switching. In
fact, in the between speaker condition, a “negative
gap” or overlapping speech is a possibility (cf. [5]).

Figure 2: Hazard functions without covariates
(posterior pointwise mean; note different scale for
pair F6/F7).
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Pause risk is thus initially smaller than gap risk,
but as silence continues the situation reverses and
pause risk becomes about twice as large as gap risk.
It is worth noting that for speakers in the same situ-
ation (following a given speaker: dashed line paired
with opposite color solid line) there is always only
one crossover point (at least within the 2 s period
examined here), ranging from about 60 ms to about
290 ms. Given the oscillatory hypothesis we would
expect the hazard functions to exhibit a periodic pat-
tern leading to several crossover points.

The hazard functions do, however show some ev-
idence of alternating structure. All curves exhibit a
general rising-falling pattern and many also have an
additional early local maximum located well before
500 ms.

3.2. Hazard functions with syllable rate as covariate

Since W&W postulate that syllable rhythm contin-
ues into silence, it is of interest to investigate the
possible influence of observable syllable rate on the
hazard function of following silence. It is also con-
ceiveable that periodicity has been obscured in the
hazard functions for Fig. 2 by pooling cases with
differing syllable rates. The results of hazard regres-
sion with syllable rate as a covariate are shown in
Fig. 3. Following [3, 4], syllable rate was obtained
by dividing the duration of the previous chunk of
speech by the number syllables it contains.

Speakers do appear to be sensitive to the syllable



Figure 3: Hazard functions (posterior pointwise mean) with syllable rate of preceding speech as covariate.
Average syllable duration of preceding speech chunk: fast (100 ms) medium (200 ms) slow (300 ms)
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rate of previous speech in both conditions. Faster
rate generally increases risk of starting to speak
again (pause, top row in Fig. 3). Faster rate de-
creases risk of starting to speak after gap (bottom
row in Fig. 3). These general effects are minimal or
even slightly reversed after speakers M2 and F4 (and
F6 for pause), a fact which may be due to individ-
ual speaker differences, or merely a consequence of
the imprecise estimate of syllable rate used. Signif-
icance of the effects can be approximately assessed
in Fig. 4, which shows the posterior 95 % highest
density intervals (HDI) for overall hazard level by
syllable rate.

Taking syllable rate into account did not reveal
more periodicity. In fact, rather than affecting the
hazard time scale as predicted by the hypothesis of
syllable rhythm continuing into silence, syllable rate
appears to influence the overall hazard level. More-
over the effect is generally in opposite directions for
pause vs. gap, which can be taken to mean that it is
more an indication of willingness to give up the turn:

Figure 4: Estimated effect of syllable rate (poste-
rior mean & 95 % HDI)
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faster speech means the speaker is less likely to give
up the turn, while the other speaker, sensitive to this
aspect, is more willing to wait.

4. DISCUSSION

4.1. Parametric models

While nonparametric modeling provides a general
view with few assumptions, parametric modeling
may help to understand the underlying processes.
Several types of parametric model are available (dif-
fering in the form of the hazard function and how it
is modified by covariates), two of the most popular
being accelerated life models and proportional haz-
ards models. Accelerated life (or “time stretching”)
models cannot be ruled out for pauses (ie. faster
speech simply makes pause time go more quickly),
but are not plausible for gaps. Proportional haz-
ards (or Cox) models are models in which covariates
multiply overall hazard level rather than time course.
This type of model appears to be more plausible.

4.2. Stochastic process model for silence

One technique for understanding the shape of a haz-
ard function is to postulate an underlying stochastic
process which triggers the observed event in ques-
tion when the process crosses a threshold [2]. The
time until a threshold is crossed by a stochastic pro-
cess is known as the first passage time (or sometimes
first hitting time). In the present context this can
be equated with silence duration. Interpretation in
terms of an underlying process also potentially fa-
cilitates the interpretation of covariates, which rather
than influencing the hazard of an event directly, can
be thought of as influencing the underlying process.

Base hazard rates for our pause and gap data have
the general character of rising then falling. This is to
say that at the beginning of silence the tendency to



resume speaking first grows, but later gradually falls
so that the longer silence continues the less likely it
is to end.

As discussed in [2], this is a fairly general sit-
uation for first passage times in a wide range of
stochastic processes: starting points relatively close
to the threshold generate a decreasing hazard, rela-
tively distant starting points generate an increasing
hazard, while intermediate distances lead to a rising
falling hazard function.

While several theoretical stochastic processes can
lead to a hazard rate with the requisite property,
given an appropriate distribution of starting points,
the standard Wiener process (continuous time ana-
logue of a random walk; also known as Brownian
motion) may be considered a canonical case.

In the present setting, the Wiener process inter-
pretation implies a continuously fluctuating variable
representing inclination to start speaking. A speaker
initiates speech when this inclination reaches a
threshold level for the first time (first passage time
or first hitting time). Including possible drift towards
the threshold, the Wiener process can be character-
ized as

(1) S(t) = c−µt +W (t)

where S(t) is the fluctuation, c = S(0) the starting
point (level at time zero), µ the drift and W (t) a
standard Wiener process. Two examples of such
processes are shown in Fig. 5, one starting closer to
threshold with smaller drift, the other starting farther
from threshold but with greater drift.

Several modifications of the basic Wiener process
are possible to account for bimodality in the hazard
function [11]. All of these modifications represent a
combination of two unimodal processes.

Bimodal heterogeneity (mixture of two inverse
Gaussian distributions, cf. e.g. [12]) assumes that
each silence belongs to one of two different types. If
the two types could be identified, each would exhibit
a unimodal hazard function. Perhaps some of the si-
lences were initiated as genuine turn-ends (cf. the

Figure 5: Examples of Wiener processes
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notion of transition-relevance place [13]), whereas
other cases were not intended as giving up the floor.
It is reasonable to expect these two types to be char-
acterised by stochastic processes with different pa-
rameters (especially for pauses), and this could lead
to bimodal hazard functions.

A two stage process starts in one state, but after
reaching an intermediate threshold jumps to a sec-
ond state with different values for some parameters.

Two simultaneous processes (with different prop-
erties) during pause with speech starting when ei-
ther one of the processes reaches threshold. In the
present case this could be interpreted as a single fast
‘turn-taking’ or wait cycle accompanied by a slower
background process (for instance thinking of some-
thing new to say). The relative importance of the
two components would apparently vary for different
speakers (and/or situations).

5. CONCLUSIONS

Hazard function modeling promises to be a power-
ful tool for understanding pauses, gaps and rhyth-
mic tendencies and deserves to be developed further.
Looking at the estimated hazard functions for con-
versational silence categorized in various ways al-
lows us to answer some of our questions with more
confidence.

Several speakers exhibit fluctuating hazard func-
tions, for pauses as well as gaps, and this may be
taken as evidence for a silent turn-cycle of the kind
postulated by W&W. However, even though this
turn-cycle is approximately syllable sized, it cannot
be easily characterised as a continuation of the sylla-
ble rhythm of the preceding speech. Preceding syl-
lable rate does have an effect, but it appears to affect
the intensity of the waiting process rather than de-
termining cycle duration, and generally in opposite
directions for pauses and gaps, possibly indicating
that effects are less related to continuity of preced-
ing rhythms and more related to anticipating turns.

If fluctuating hazard functions are taken as evi-
dence for a silent turn-cycle, this oscillatory behav-
ior during silence would appear to be very short
lived. Speakers appear to take at most one such cycle
rather than continuing for several seconds as conjec-
tured by W&W.

In future research more covariates (finer clas-
sification of surrounding speech) need to be col-
lected, e.g. whether silence interrupts a word or
phrase. Also more attention needs to be paid to
speech/silence transitions (voiced or voiceless frica-
tion, audible clicks) as well as sounds during pauses
and gaps (such as laughter or breathing).



6. REFERENCES

[1] Wilson, M., Wilson, T. P. 2006. An oscillator model
of the timing of turn-taking. Psychonomic Bulletin
& Review 12, 957–968.

[2] Aalen, O. O., Gjessing, H. K. 2001. Understanding
the shape of the hazard rate: A process point of
view. Statistical Science 16 (1), 1–22.
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